

Download at WoweBook.Com

Cloud Application Architectures

Download at WoweBook.Com

Download at WoweBook.Com

Cloud Application Architectures

George Reese

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Download at WoweBook.Com

Cloud Application Architectures
by George Reese

Copyright © 2009 George Reese. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also

available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional

sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Sumita Mukherji
Copyeditor: Genevieve d'Entremont
Proofreader: Kiel Van Horn

Indexer: Joe Wizda
Cover Designer: Mark Paglietti
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
April 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly

Media, Inc. Cloud Application Architectures and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no

responsibility for errors or omissions, or for damages resulting from the use of the information contained

herein.

ISBN: 978-0-596-15636-7

[V]

1238076149

Download at WoweBook.Com

http://safari.oreilly.com

C O N T E N T S

PREFACE vii

1 CLOUD COMPUTING 1
The Cloud 2
Cloud Application Architectures 7
The Value of Cloud Computing 10
Cloud Infrastructure Models 17
An Overview of Amazon Web Services 19

2 AMAZON CLOUD COMPUTING 25
Amazon S3 25
Amazon EC2 29

3 BEFORE THE MOVE INTO THE CLOUD 47
Know Your Software Licenses 47
The Shift to a Cloud Cost Model 49
Service Levels for Cloud Applications 54
Security 63
Disaster Recovery 65

4 READY FOR THE CLOUD 67
Web Application Design 67
Machine Image Design 75
Privacy Design 80
Database Management 87

5 SECURITY 99
Data Security 99
Network Security 106
Host Security 113
Compromise Response 118

6 DISASTER RECOVERY 119
Disaster Recovery Planning 119
Disasters in the Cloud 122
Disaster Management 132

7 SCALING A CLOUD INFRASTRUCTURE 137
Capacity Planning 137
Cloud Scale 145

A AMAZON WEB SERVICES REFERENCE 153

v

Download at WoweBook.Com

B GOGRID 173
by Randy Bias

C RACKSPACE 181
by Eric Johnson

INDEX 185

vi C O N T E N T S

Download at WoweBook.Com

P R E F A C E

IN 2003, I JUMPED OFF THE ENTREPRENEURIAL CLIFF and started the company Valtira. In a
gross oversimplification, Valtira serves the marketing function for companies in much the same
way that SalesForce.com serves the sales function. It does online campaign management,
customer relationship management (CRM) integration with marketing programs, personalized
web content, and a lot of other marketing things. Valtira’s business model differed in one key
way from the SalesForce.com business model: the platform required you to build your website
on top of the content management system (CMS) at its core.

This CMS requirement made Valtira much more powerful than its competition as a Software
as a Service (SaaS) marketing tool. Unfortunately, it also created a huge barrier to entry for
Valtira solutions. While many companies end up doing expensive CRM integration services
engagements with SalesForce.com, you can get started on their platform without committing
to a big integration project. Valtira, on the other hand, demanded a big web development
project of each customer.

In 2007, we decided to alter the equation and began making components of the Valtira platform
available on-demand. In other words, we changed our software so marketers could register via
the Valtira website and immediately begin building landing pages or developing personalized
widgets to stick on their websites.

Our on-demand application had a different risk profile than the other deployments we
managed. When a customer built their website on top of the Valtira Online Marketing Platform,
they selected the infrastructure to meet their availability needs and paid for that infrastructure.

vii

Download at WoweBook.Com

If they had high-availability needs, they paid for a high-availability managed services
environment at ipHouse or Rackspace and deployed our software into that infrastructure. If
they did not have high-availability needs, we provided them with a shared server infrastructure
that they could leverage.

The on-demand profile is different—everyone always expects an on-demand service to be
available, regardless of what they are paying for it. I priced out the purchase of a starter high-
availability environment for deploying the Valtira platform that consisted of the following
components:

• A high-end load balancer

• Two high-RAM application servers

• Two fast-disk database servers

• Assorted firewalls and switches

• An additional half-rack with our ISP

Did I mention that Valtira is entirely self-funded? Bank loans, management contributions, and
starter capital from family is all the money we have ever raised. Everything else has come from
operational revenues. We have used extra cash to grow the business and avoided any
extravagances. We have always managed our cash flow very carefully and were not excited
about the prospect of this size of capital expense.

I began looking at alternatives to building out my own infrastructure and priced out a managed
services infrastructure with several providers. Although the up-front costs were modest
enough to stomach, the ongoing costs were way too high until we reached a certain level of
sales. That’s when I started playing with Amazon Web Services (AWS).

AWS promised us the ability to get into a relatively high-availability environment that roughly
mirrored our desired configuration with no up-front cash and a monthly expense of under
$1,000. I was initially very skeptical about the whole thing. It basically seemed too good to be
true. But I started researching....

That’s the first thing you should know about the cloud: “But I started researching.” If you
wanted to see whether your application will work properly behind a high-end load balancer
across two application servers, would you ever go buy them just to see if it would work out
OK? I am guessing the answer to that question is no. In other words, even if this story ended
with me determining that the cloud was not right for Valtira’s business needs, the value of the
cloud is already immediately apparent in the phrase, “But I started researching.”

And I encountered problems. First, I discovered how the Amazon cloud manages IP addresses.
Amazon assigns all addresses dynamically, you do not receive any netblocks, and—at that
time—there was no option for static IP address assignment. We spent a small amount of time
on this challenge and figured we could craft an automated solution to this issue. My team
moved on to the next problem.

viii P R E F A C E

Download at WoweBook.Com

Our next challenge was Amazon’s lack of persistent storage. As with the issue of no static IP
addresses, this concern no longer exists. But before Amazon introduced its Elastic Block Storage
services, you lost all your data if your EC2 instance went down. If Valtira were a big company
with a lot of cash, we would have considered this a deal-breaker and looked elsewhere.

We almost did stop there. After all, the Valtira platform is a database-driven application that
cannot afford any data loss. We created a solution that essentially kept our MySQL slave synced
with Amazon S3 (which was good enough for this particular use of the Valtira platform) and
realized this solution had the virtue of providing automated disaster recovery.

This experimentation continued. We would run into items we felt were potential deal-breakers
only to find that we could either develop a workaround or that they actually encouraged us
to do things a better way. Eventually, we found that we could make it all work in the Amazon
cloud. We also ended up spinning off the tools we built during this process into a separate
company, enStratus.

Today, I spend most of my time moving other companies into the cloud on top of the enStratus
software. My customers tend to be more concerned with many of the security and privacy
aspects of the cloud than your average early-adopter. The purpose of this book is to help you
make the transition and prepare your web applications to succeed in the cloud.

Audience for This Book
I have written this book for technologists at all career levels. Whether you are a developer who
needs to write code for the cloud, or an architect who needs to design a system for the cloud,
or an IT manager responsible for the move into the cloud, you should find this book useful as
you prepare your journey.

This book does not have a ton of code, but here and there I have provided examples of the way
I do things. I program mostly in Java and Python against MySQL and the occasional SQL Server
or Oracle database. Instead of providing a bunch of Java code, I wanted to provide best practices
that fit any programming language.

If you design, build, or maintain web applications that might be deployed into the cloud, this
book is for you.

Organization of the Material
The first chapter of this book is for a universal audience. It describes what I mean by “the cloud”
and why it has value to an organization. I wrote it at such a level that your CFO should be able
to read the chapter and understand why the cloud is so useful.

In the second chapter, I take a bit of a diversion and provide a tutorial for the Amazon cloud.
The purpose of this book is to provide best practices that are independent of whatever cloud
you are using. My experience, however, is mostly with the Amazon cloud, and the Amazon

P R E F A C E ix

Download at WoweBook.Com

Web Services offerings make up the bulk of the market today. As a result, I thought it was
critical to give the reader a way to quickly get started with the Amazon cloud as well as a
common ground for discussing terms later in the book.

If you are interested in other clouds, I had help from some friends at Rackspace and GoGrid.
Eric “E. J.” Johnson from Rackspace has reviewed the book for issues that might be
incompatible with their offering, and Randy Bias from GoGrid has done the same for their
cloud infrastructure. Both have provided appendixes that address the specifics of their
company offerings.

Chapter 3 prepares you for the cloud. It covers what you need to do and how to analyze the
case for the move into the cloud.

Chapters 4 through 7 dive into the details of building web applications for the cloud.
Chapter 4 begins the move into the cloud with a look at transactional web application
architectures and how they need to change in the cloud. Chapter 5 confronts the security
concerns of cloud computing. Chapter 6 shows how the cloud helps you better prepare for
disaster recovery and how you can leverage the cloud to drive faster recoveries. Finally, in
Chapter 7, we address how the cloud changes perspectives on application scaling—including
automated scaling of web applications.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, filenames, Unix utilities, and command-line options.

Constant width

Indicates the contents of files, the output from commands, and generally anything found
in programs.

Constant width bold

Shows commands or other text that should be typed literally by the user, and parts of code
or files highlighted for discussion.

Constant width italic

Shows text that should be replaced with user-supplied values.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O’Reilly books does require permission. Answering a question by

x P R E F A C E

Download at WoweBook.Com

citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example, “Cloud Application Architectures by George Reese.
Copyright 2009 George Reese, 978-0-596-15636-7.”

If you feel your use of code examples falls outside fair use or the permission given above, feel
free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at http://my
.safaribooksonline.com.

We’d Like Your Feedback!
We at O’Reilly have tested and verified the information in this book to the best of our ability,
but mistakes and oversights do occur. Please let us know about errors you may find, as well as
your suggestions for future editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for the book where we list errata, examples, or any additional information.
You can access this page at:

http://www.oreilly.com/catalog/9780596156367

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

P R E F A C E xi

Download at WoweBook.Com

http://my.safaribooksonline.com
http://my.safaribooksonline.com
http://www.oreilly.com/catalog/9780596156367
http://www.oreilly.com

Acknowledgments
This book covers so many disciplines and so many technologies, it would have been impossible
for me to write it on my own.

First, I would like to acknowledge the tremendous help I received from Randy Bias at GoGrid
and E. J. Johnson at Rackspace. My experience in cloud infrastructure has been entirely with
Amazon Web Services, and Randy and E. J. spent a significant amount of time reviewing the
book for places where the discussion was specific to AWS. They also wrote the appendixes on
the GoGrid and Rackspace offerings.

Next, I would like to thank everyone who read each chapter and provided detailed comments:
John Allspaw, Jeff Barr, Christofer Hoff, Theo Schlossnagle, and James Urquhart. They each
brought very unique expertise into the technical review of this book, and the book is much
better than it otherwise would have been, thanks to their critical eyes.

In addition, a number of people have reviewed and provided feedback on selected parts of the
book: David Bagley, Morgan Catlin, Mike Horwath, Monique Reese, Stacey Roelofs, and John
Viega.

Finally, I owe the most thanks on this book to Andy Oram and Isabel Kunkle from O’Reilly. I
have said this in other places, but I need to say it here: their editing makes me a better writer.

xii P R E F A C E

Download at WoweBook.Com

C H A P T E R O N E

Cloud Computing

THE HALLMARK OF ANY BUZZWORD is its ability to convey the appearance of meaning without
conveying actual meaning. To many people, the term cloud computing has the feel of a
buzzword.

It’s used in many discordant contexts, often referencing apparently distinct things. In one
conversation, people are talking about Google Gmail; in the next, they are talking about
Amazon Elastic Compute Cloud (at least it has “cloud” in its name!).

But cloud computing is not a buzzword any more than the term the Web is. Cloud computing
is the evolution of a variety of technologies that have come together to alter an organization’s
approach to building out an IT infrastructure. Like the Web a little over a decade ago, there is
nothing fundamentally new in any of the technologies that make up cloud computing. Many
of the technologies that made up the Web existed for decades when Netscape came along and
made them accessible; similarly, most of the technologies that make up cloud computing have
been around for ages. It just took Amazon to make them all accessible to the masses.

The purpose of this book is to empower developers of transactional web applications to leverage
cloud infrastructure in the deployment of their applications. This book therefore focuses on
the cloud as it relates to clouds such as Amazon EC2, more so than Google Gmail. Nevertheless,
we should start things off by setting a common framework for the discussion of cloud
computing.

1

Download at WoweBook.Com

The Cloud
The cloud is not simply the latest fashionable term for the Internet. Though the Internet is a
necessary foundation for the cloud, the cloud is something more than the Internet. The cloud
is where you go to use technology when you need it, for as long as you need it, and not a
minute more. You do not install anything on your desktop, and you do not pay for the
technology when you are not using it.

The cloud can be both software and infrastructure. It can be an application you access through
the Web or a server that you provision exactly when you need it. Whether a service is software
or hardware, the following is a simple test to determine whether that service is a cloud service:

If you can walk into any library or Internet cafe and sit down at any computer without preference

for operating system or browser and access a service, that service is cloud-based.

I have defined three criteria I use in discussions on whether a particular service is a cloud
service:

• The service is accessible via a web browser (nonproprietary) or web services API.

• Zero capital expenditure is necessary to get started.

• You pay only for what you use as you use it.

I don’t expect those three criteria to end the discussion, but they provide a solid basis for
discussion and reflect how I view cloud services in this book.

If you don’t like my boiled-down cloud computing definition, James Governor has an excellent
blog entry on “15 Ways to Tell It’s Not Cloud Computing,” at http://www.redmonk.com/
jgovernor/2008/03/13/15-ways-to-tell-its-not-cloud-computing.

Software

As I mentioned earlier, cloud services break down into software services and infrastructure
services. In terms of maturity, software in the cloud is much more evolved than hardware in
the cloud.

Software as a Service (SaaS) is basically a term that refers to software in the cloud. Although
not all SaaS systems are cloud systems, most of them are.

SaaS is a web-based software deployment model that makes the software available entirely
through a web browser. As a user of SaaS software, you don’t care where the software is hosted,
what kind of operating system it uses, or whether it is written in PHP, Java, or .NET. And,
above all else, you don’t have to install a single piece of software anywhere.

Gmail, for example, is nothing more than an email program you use in a browser. It provides
the same functionality as Apple Mail or Outlook, but without the fat client. Even if your domain
does not receive email through Gmail, you can still use Gmail to access your mail.

2 C H A P T E R O N E

Download at WoweBook.Com

http://www.redmonk.com/jgovernor/2008/03/13/15-ways-to-tell-its-not-cloud-computing
http://www.redmonk.com/jgovernor/2008/03/13/15-ways-to-tell-its-not-cloud-computing

SalesForce.com is another variant on SaaS. SalesForce.com is an enterprise customer
relationship management (CRM) system that enables sales people to track their prospects and
leads, see where those individuals sit in the organization’s sales process, and manage the
workflow of sales from first contact through completion of a sale and beyond. As with Gmail,
you don’t need any software to access SalesForce.com: point your web browser to the
SalesForce.com website, sign up for an account, and get started.

SaaS systems have a few defining characteristics:

Availability via a web browser
SaaS software never requires the installation of software on your laptop or desktop. You
access it through a web browser using open standards or a ubiquitous browser plug-in.
Cloud computing and proprietary desktop software simply don’t mix.

On-demand availability
You should not have to go through a sales process to gain access to SaaS-based software.
Once you have access, you should be able to go back into the software any time, from
anywhere.

Payment terms based on usage
SaaS does not need any infrastructure investment or fancy setup, so you should not have
to pay any massive setup fees. You should simply pay for the parts of the service you use
as you use them. When you no longer need those services, you simply stop paying.

Minimal IT demands
If you don’t have any servers to buy or any network to build out, why do you need an IT
infrastructure? While SaaS systems may require some minimal technical knowledge for
their configuration (such as DNS management for Google Apps), this knowledge lays
within the realm of the power user and not the seasoned IT administrator.

One feature of some SaaS deployments that I have intentionally omitted is multitenancy. A
number of SaaS vendors boast about their multitenancy capabilities—some even imply that
multitenancy is a requirement of any SaaS system.

A multitenant application is server-based software that supports the deployment of multiple
clients in a single software instance. This capability has obvious advantages for the SaaS vendor
that, in some form, trickle down to the end user:

• Support for more clients on fewer hardware components

• Quicker and simpler rollouts of application updates and security patches

• Architecture that is generally more sound

The ultimate benefit to the end user comes indirectly in the form of lower service fees, quicker
access to new functionality, and (sometimes) quicker protection against security holes.
However, because a core principle of cloud computing is a lack of concern for the underlying
architecture of the applications you are using, the importance of multitenancy is diminished
when looking at things from that perspective.

C L O U D C O M P U T I N G 3

Download at WoweBook.Com

As we discuss in the next section, virtualization technologies essentially render the
architectural advantages of multitenancy moot.

Hardware

In general, hardware in the cloud is conceptually harder for people to accept than software in
the cloud. Hardware is something you can touch: you own it; you don’t license it. If your server
catches on fire, that disaster matters to you. It’s hard for many people to imagine giving up the
ability to touch and own their hardware.

With hardware in the cloud, you request a new “server” when you need it. It is ready as quickly
as 10 minutes after your request. When you are done with it, you release it and it disappears
back into the cloud. You have no idea what physical server your cloud-based server is running,
and you probably don’t even know its specific geographic location.

THE BARRIER OF OLD EXPECTATIONS
The hardest part for me as a vendor of cloud-based computing services is answering the question,
“Where are our servers?” The real answer is, inevitably, “I don’t know—somewhere on the East
Coast of the U.S. or Western Europe,” which makes some customers very uncomfortable. This lack
of knowledge of your servers’ location, however, provides an interesting physical security benefit,
as it becomes nearly impossible for a motivated attacker to use a physical attack vector to
compromise your systems.

The advantages of a cloud infrastructure

Think about all of the things you have to worry about when you own and operate your own
servers:

Running out of capacity?
Capacity planning is always important. When you own your own hardware, however,
you have two problems that the cloud simplifies for you: what happens when you are
wrong (either overoptimistic or pessimistic), and what happens if you don’t have the
expansion capital when the time comes to buy new hardware. When you manage your
own infrastructure, you have to cough up a lot of cash for every new Storage Area Network
(SAN) or every new server you buy. You also have a significant lead time from the moment
you decide to make a purchase to getting it through the procurement process, to taking
delivery, and finally to having the system racked, installed, and tested.

What happens when there is a problem?
Sure, any good server has redundancies in place to survive typical hardware problems.
Even if you have an extra hard drive on hand when one of the drives in your RAID array

4 C H A P T E R O N E

Download at WoweBook.Com

fails, someone has to remove the old drive from the server, manage the RMA,* and put
the new drive into the server. That takes time and skill, and it all needs to happen in a
timely fashion to prevent a complete failure of the server.

What happens when there is a disaster?
If an entire server goes down, unless you are in a high-availability infrastructure, you have
a disaster on your hands and your team needs to rush to address the situation. Hopefully,
you have solid backups in place and a strong disaster recovery plan to get things
operational ASAP. This process is almost certainly manual.

Don’t need that server anymore?
Perhaps your capacity needs are not what they used to be, or perhaps the time has come
to decommission a fully depreciated server. What do you do with that old server? Even if
you give it away, someone has to take the time to do something with that server. And if
the server is not fully depreciated, you are incurring company expenses against a machine
that is not doing anything for your business.

What about real estate and electricity?
When you run your own infrastructure (or even if you have a rack at an ISP), you may
be paying for real estate and electricity that are largely unused. That’s a very ungreen
thing, and it is a huge waste of money.

None of these issues are concerns with a proper cloud infrastructure:

• You add capacity into a cloud infrastructure the minute you need it, and not a moment
sooner. You don’t have any capital expense associated with the allocation, so you don’t
have to worry about the timing of capacity needs with budget needs. Finally, you can be
up and running with new capacity in minutes, and thus look good even when you get
caught with your pants down.

• You don’t worry about any of the underlying hardware, ever. You may never even know
if the physical server you have been running on fails completely. And, with the right tools,
you can automatically recover from the most significant disasters while your team is
asleep.

• When you no longer need the same capacity or you need to move to a different virtual
hardware configuration, you simply deprovision your server. You do not need to dispose
of the asset or worry about its environmental impact.

• You don’t have to pay for a lot of real estate and electricity you never use. Because you
are using a fractional portion of a much beefier piece of hardware than you need, you are
maximizing the efficiency of the physical space required to support your computing needs.
Furthermore, you are not paying for an entire rack of servers with mostly idle CPU cycles
consuming electricity.

* Return merchandise authorization. When you need to return a defective part, you generally have to go
through some vendor process for returning that part and obtaining a replacement.

C L O U D C O M P U T I N G 5

Download at WoweBook.Com

Hardware virtualization

Hardware virtualization is the enabling technology behind many of the cloud infrastructure
vendors offerings, including Amazon Web Services (AWS).† If you own a Mac and run
Windows or Linux inside Parallels or Fusion, you are using a similar virtualization technology
to those that support cloud computing. Through virtualization, an IT admin can partition a
single physical server into any number of virtual servers running their own operating systems
in their allocated memory, CPU, and disk footprints. Some virtualization technologies even
enable you to move one running instance of a virtual server from one physical server to
another. From the perspective of any user or application on the virtual server, no indication
exists to suggest the server is not a real, physical server.

A number of virtualization technologies on the market take different approaches to the
problem of virtualization. The Amazon solution is an extension of the popular open source
virtualization system called Xen. Xen provides a hypervisor layer on which one or more guest
operating systems operate. The hypervisor creates a hardware abstraction that enables the
operating systems to share the resources of the physical server without being able to directly
access those resources or their use by another guest operating system.

A common knock against virtualization—especially for those who have experienced it in
desktop software—is that virtualized systems take a significant performance penalty. This
attack on virtualization generally is not relevant in the cloud world for a few reasons:

• The degraded performance of your cloud vendor’s hardware is probably better than the
optimal performance of your commodity server.

• Enterprise virtualization technologies such as Xen and VMware use paravirtualization as
well as the hardware-assisted virtualization capabilities of a variety of CPU manufacturers
to achieve near-native performance.

Cloud storage

Abstracting your hardware in the cloud is not simply about replacing servers with
virtualization. It’s also about replacing your physical storage systems.

Cloud storage enables you to “throw” data into the cloud and without worrying about how it
is stored or backing it up. When you need it again, you simply reach into the cloud and grab
it. You don’t know how it is stored, where it is stored, or what has happened to all the pieces
of hardware between the time you put it in the cloud and the time you retrieved it.

As with the other elements of cloud computing, there are a number of approaches to cloud
storage on the market. In general, they involve breaking your data into small chunks and
storing that data across multiple servers with fancy checksums so that the data can be retrieved

† Other approaches to cloud infrastructure exist, including physical hardware on-demand through
companies such as AppNexus and NewClouds. In addition, providers such as GoGrid (summarized in
Appendix B) offer hybrid solutions.

6 C H A P T E R O N E

Download at WoweBook.Com

rapidly—no matter what has happened in the meantime to the storage devices that comprise
the cloud.

I have seen a number of people as they get started with the cloud attempt to leverage cloud
storage as if it were some kind of network storage device. Operationally, cloud storage and
traditional network storage serve very different purposes. Cloud storage tends to be much
slower with a higher degree of structure, which often renders it impractical for runtime storage
for an application, regardless of whether that application is running in the cloud or somewhere
else.

Cloud storage is not, generally speaking, appropriate for the operational needs of transactional
cloud-based software. Later, we discuss in more detail the role of cloud storage in transaction
application management. For now, think of cloud storage as a tape backup system in which
you never have to manage any tapes.

N O T E
Amazon recently introduced a new offering called Amazon CloudFront, which leverages

Amazon S3 as a content distribution network. The idea behind Amazon CloudFront is to

replicate your cloud content to the edges of the network. While Amazon S3 cloud storage

may not be appropriate for the operational needs of many transactional web applications,

CloudFront will likely prove to be a critical component to the fast, worldwide distribution of

static content.

Cloud Application Architectures
We could spend a lot of precious paper discussing Software as a Service or virtualization
technologies (did you know that you can mix and match at least five kinds of virtualization?),
but the focus of this book is how you write an application so that it can best take advantage of
the cloud.

Grid Computing

Grid computing is the easiest application architecture to migrate into the cloud. A grid
computing application is processor-intensive software that breaks up its processing into small
chunks that can then be processed in isolation.

If you have used SETI@home, you have participated in grid computing. SETI (the Search for
Extra-Terrestrial Intelligence) has radio telescopes that are constantly listening to activity in
space. They collect volumes of data that subsequently need to be processed to search for a
nonnatural signal that might represent attempts at communication by another civilization. It
would take so long for one computer to process all of that data that we might as well wait until
we can travel to the stars. But many computers using only their spare CPU cycles can tackle
the problem extraordinarily quickly.

C L O U D C O M P U T I N G 7

Download at WoweBook.Com

These computers running SETI@home—perhaps including your desktop—form the grid.
When they have extra cycles, they query the SETI servers for data sets. They process the data
sets and submit the results back to SETI. Your results are double-checked against processing
by other participants, and interesting results are further checked.‡

Back in 1999, SETI elected to use the spare cycles of regular consumers’ desktop computers
for its data processing. Commercial and government systems used to network a number of
supercomputers together to perform the same calculations. More recently, server farms were
created for grid computing tasks such as video rendering. Both supercomputers and server
farms are very expensive, capital-intensive approaches to the problem of grid computing.

The cloud makes it cheap and easy to build a grid computing application. When you have data
that needs to be processed, you simply bring up a server to process that data. Afterward, that
server can either shut down or pull another data set to process.

Figure 1-1 illustrates the process flow of a grid computing application. First, a server or server
cluster receives data that requires processing. It then submits that job to a message queue (1).
Other servers—often called workers (or, in the case of SETI@home, other desktops)—watch
the message queue (2) and wait for new data sets to appear. When a data set appears, the first
computer to see it processes it and then sends the results back into the message queue (3). The
two components can operate independently of each other, and one can even be running when
no computer is running the other.

‡ For more information on SETI@home and the SETI project, pick up a copy of O’Reilly’s Beyond
Contact (http://oreilly.com/catalog/9780596000370).

Processing
node

Message
queue

Data
manager

2. Pull data set

1. Push data set

4. Read results

3. Publish results

FIGURE 1-1. The grid application architecture separates the core application from its data processing nodes

8 C H A P T E R O N E

Download at WoweBook.Com

http://oreilly.com/catalog/9780596000370

Cloud computing comes to the rescue here because you do not need to own any servers when
you have no data to process. You can then scale the number of servers to support the number
of data sets that are coming into your application. In other words, instead of having idle
computers process data as it comes in, you have servers turn themselves on as the rate of
incoming data increases, and turn themselves off as the data rate decreases.

Because grid computing is currently limited to a small market (scientific, financial, and other
large-scale data crunchers), this book doesn’t focus on its particular needs. However, many of
the principles in this book are still applicable.

Transactional Computing

Transactional computing makes up the bulk of business software and is the focus of this book.
A transaction system is one in which one or more pieces of incoming data are processed
together as a single transaction and establish relationships with other data already in the
system. The core of a transactional system is generally a relational database that manages the
relations among all of the data that make up the system.

Figure 1-2 shows the logical layout of a high-availability transactional system. Under this kind
of architecture, an application server typically models the data stored in the database and
presents it through a web-based user interface that enables a person to interact with the data.
Most of the websites and web applications that you use every day are some form of
transactional system. For high availability, all of these components may form a cluster, and the
presentation/business logic tier can hide behind a load balancer.

Deploying a transactional system in the cloud is a little more complex and less obvious than
deploying a grid system. Whereas nodes in a grid system are designed to be short-lived, nodes
in a transactional system must be long-lived.

A key challenge for any system requiring long-lived nodes in a cloud infrastructure is the basic
fact that the mean time between failures (MTBF) of a virtual server is necessarily less than that
for the underlying hardware. An admittedly gross oversimplification of the problem shows that
if you have two physical servers with a three-year MTBF, you will be less likely to experience
an outage across the entire system than you would be with a single physical server running
two virtual nodes. The number of physical nodes basically governs the MTBF, and since there
are fewer physical nodes, there is a higher MTBF for any given node in your cloud-based
transactional system.

The cloud, however, provides a number of avenues that not only help mitigate the lower failure
rate of individual nodes, but also potentially increase the overall MTBF for your transactional
system. In this book, we cover the tricks that will enable you to achieve levels of availability
that otherwise might not be possible under your budget while still maintaining transactional
integrity of your cloud applications.

C L O U D C O M P U T I N G 9

Download at WoweBook.Com

The Value of Cloud Computing
How far can you take all of this?

If you can deploy all of your custom-built software systems on cloud hardware and leverage
SaaS systems for your packaged software, you might be able to achieve an all-cloud IT
infrastructure. Table 1-1 lists the components of the typical small- or medium-sized business.

TABLE 1-1. The old IT infrastructure versus the cloud

Traditional Cloud

File server Google Docs

MS Outlook, Apple Mail Gmail, Yahoo!, MSN

SAP CRM/Oracle CRM/Siebel SalesForce.com

Quicken/Oracle Financials Intacct/NetSuite

Microsoft Office/Lotus Notes Google Apps

Stellent Valtira

Off-site backup Amazon S3

Server, racks, and firewall Amazon EC2, GoGrid, Mosso

Load
balancer

INTERNET

Application
server

Database cluster

FIGURE 1-2. A transactional application separates an application into presentation, business logic, and data storage

10 C H A P T E R O N E

Download at WoweBook.Com

The potential impact of the cloud is significant. For some organizations—particularly small- to
medium-sized businesses—it makes it possible to never again purchase a server or own any
software licenses. In other words, all of these worries diminish greatly or disappear altogether:

• Am I current on all my software licenses? SaaS systems and software with cloud-friendly
licensing simply charge your credit card for what you use.

• When do I schedule my next software upgrade? SaaS vendors perform the upgrades for
you; you rarely even know what version you are using.

• What do I do when a piece of hardware fails at 3 a.m.? Cloud infrastructure management
tools are capable of automating even the most traumatic disaster recovery policies.

• How do I manage my technology assets? When you are in the cloud, you have fewer
technology assets (computers, printers, etc.) to manage and track.

• What do I do with my old hardware? You don’t own the hardware, so you don’t have to
dispose of it.

• How do I manage the depreciation of my IT assets? Your costs are based on usage and thus
don’t involve depreciable expenses.

• When can I afford to add capacity to my infrastructure? In the cloud, you can add capacity
discretely as the business needs it.

SaaS vendors (whom I’ve included as part of cloud computing) can run all their services in a
hardware cloud provided by another vendor, and therefore offer a robust cloud infrastructure
to their customers without owning their own hardware. In fact, my own business runs that
way.

Options for an IT Infrastructure

The cloud competes against two approaches to IT:

• Internal IT infrastructure and support

• Outsourcing to managed services

If you own the boxes, you have an internally managed IT infrastructure—even if they are
sitting in a rack in someone else’s data center. For you, the key potential benefit of cloud
computing (certainly financially) is the lack of capital investment required to leverage it.

Internal IT infrastructure and support is one in which you own the boxes and pay people—
whether staff or contract employees—to maintain those boxes. When a box fails, you incur
that cost, and you have no replacement absent a cold spare that you own.

Managed services outsourcing has similar benefits to the cloud in that you pay a fixed fee for
someone else to own your servers and make sure they stay up. If a server goes down, it is the
managed services company who has to worry about replacing it immediately (or within
whatever terms have been defined in your service-level agreement). They provide the

C L O U D C O M P U T I N G 11

Download at WoweBook.Com

expertise to make sure the servers are fixed with the proper operating system patches and
manage the network infrastructure in which the servers operate.

Table 1-2 provides a comparison between internal IT, managed services, and cloud-based IT
with respect to various facets of IT infrastructure development.

TABLE 1-2. A comparison of IT infrastructure options

 Internal IT Managed services The cloud

Capital

investment

Significant Moderate Negligible

How much cash do you have to cough up in order to set up your infrastructure or make changes to it?

With internal IT, you have to pay for your hardware before you need it (financing is not important in

this equation).a Under managed services, you are typically required to pay a moderate setup fee. In the

cloud, you generally have no up-front costs and no commitment.

Ongoing costs Moderate Significant Based on usage

Your ongoing costs for internal IT are based on the cost of staff and/or contractors to manage the

infrastructure, as well as space at your hosting provider and/or real estate and utilities costs. You can

see significant variances in the ongoing costs—especially with contract resources—as emergencies

occur and other issues arise. Although managed services are often quite pricey, you generally know

exactly what you are going to pay each month and it rarely varies. The cloud, on the other hand, can be

either pricey or cheap, depending on your needs. Its key advantage is that you pay for exactly what you

use and nothing more. Your staff costs are greater than with a managed services provider, but less than

with internal IT.

Provisioning

time

Significant Moderate None

How long does it take to add a new component into your infrastructure? Under both the internal IT and

managed services models, you need to plan ahead of time, place an order, wait for the component to

arrive, and then set it up in the data center. The wait is typically significantly shorter with a managed

services provider, since they make purchases ahead of time in bulk. Under the cloud, however, you

can have a new “server” operational within minutes of deciding you want it.

Flexibility Limited Moderate Flexible

How easily can your infrastructure adapt to unexpected peaks in resource demands? For example, do

you have a limit on disk space? What happens if you suddenly approach that limit? Internal IT has a

very fixed capacity and can meet increased resource demands only through further capital investment.

A managed services provider, on the other hand, usually can offer temporary capacity relief by

uncapping your bandwidth, giving you short-term access to alternative storage options, and so on. The

cloud, however, can be set up to automatically add capacity into your infrastructure as needed, and to

let go of that capacity when it is no longer required.

12 C H A P T E R O N E

Download at WoweBook.Com

 Internal IT Managed services The cloud

Staff expertise

requirements

Significant Limited Moderate

How much expertise do you need in-house to support your environments? With internal IT, you

obviously need staff or contractors who know the ins and outs of your infrastructure, from opening the

boxes up and fiddling with the hardware to making sure the operating systems are up-to-date with the

latest patches. The advantage here goes to the managed services infrastructure, which enables you to

be largely ignorant of all things IT. Finally, the cloud may require a lot of skill or very little skill, depending

on how you are using it. You can often find a cloud infrastructure manager (enStratus or RightScale, for

example) to manage the environment, but you still must have the skills to set up your machine images.

Reliability Varies High Moderate to high

How certain are you that your services will stay up 24/7? The ability to create a high-availability

infrastructure with an internal IT staff is a function of the skill level of your staff and the amount of cash

you invest in the infrastructure. A managed services provider is the safest, most proven alternative, but

this option can lack the locational redundancy of the cloud. A cloud infrastructure, finally, has significant

locational redundancies but lacks a proven track record of stability.

a From a financial perspective, the difference between coughing up cash today and borrowing it from a bank is inconsequential.
Either way, spending $40K costs you money. If you borrow it, you pay interest. If you take it out of your bank account, you lose the
opportunity to do something else with it (cost of capital).

The one obvious fact that should jump out of this chart is that building an IT infrastructure
from scratch no longer makes any sense. The only companies that should have an internal IT
are organizations with a significant preexisting investment in internal IT or with regulatory
requirements that prevent data storage in third-party environments.

Everyone else should be using a managed services provider or the cloud.

The Economics

Perhaps the biggest benefit of cloud computing over building out your own IT infrastructure
has nothing to do with technology—it’s financial. The “pay for what you use” model of cloud
computing is significantly cheaper for a company than the “pay for everything up front” model
of internal IT.

Capital costs

The primary financial problem with an internally based IT infrastructure is the capital cost. A
capital cost is cash you pay for assets prior to their entering into operations. If you buy a server,
that purchase is a capital cost because you pay for it all up front, and then you realize its benefits
(in other words, you use it) over the course of 2–3 years.

Let’s look at the example of a $5,000 computer that costs $2,000 to set up. The $5,000 is a
capital cost and the $2,000 is a one-time expense. From an accounting perspective, the $5,000

C L O U D C O M P U T I N G 13

Download at WoweBook.Com

cost is just a “funny money” transaction, in that $5,000 is moved from one asset account (your
bank account) into another asset account (your fixed assets account). The $2,000, on the other
hand, is a real expense that offsets your profits.

The server is what is called a depreciable asset. As it is used, the server is depreciated in
accordance with how much it has been used. In other words, the server’s value to the company
is reduced each month it is in use until it is worth nothing and removed from service. Each
reduction in value is considered an expense that offsets the company’s profits.

Finance managers hate capital costs for a variety of reasons. In fact, they hate any expenses
that are not tied directly to the current operation of the company. The core rationale for this
dislike is that you are losing cash today for a benefit that you will receive slowly over time
(technically, over the course of the depreciation of the server). Any business owner or
executive wants to focus the organization’s cash on things that benefit them today. This
concern is most acute with the small- and medium-sized business that may not have an easy
time walking into the bank and asking for a loan.

The key problem with this delayed realization of value is that money costs money. A company
will often fund their operational costs through revenues and pay for capital expenses through
loans. If you can grow the company faster than the cost of money, you win. If you cannot grow
that rapidly or—worse—you cannot get access to credit, the capital expenses become a
significant drain on the organization.

Cost comparison

Managed services infrastructures and the cloud are so attractive to companies because they
largely eliminate capital investment and other up-front costs. The cloud has the added
advantage of tying your costs to exactly what you are using, meaning that you can often
connect IT costs to revenue instead of treating them as overhead.

Table 1-3 compares the costs of setting up an infrastructure to support a single “moderately
high availability” transactional web application with a load balancer, two application servers,
and two database servers. I took typical costs at the time of writing, October 2008.

TABLE 1-3. Comparing the cost of different IT infrastructures

 Internal IT Managed services The cloud

Capital investment $40,000 $0 $0

Setup costs $10,000 $5,000 $1,000

Monthly service fees $0 $4,000 $2,400

Monthly staff costs $3,200 $0 $1,000

Net cost over three years $149,000 $129,000 $106,000

14 C H A P T E R O N E

Download at WoweBook.Com

Table 1-3 makes the following assumptions:

• The use of fairly standard 1u server systems, such as a Dell 2950 and the high-end Amazon
instances.

• The use of a hardware load balancer in the internal IT and managed services configuration
and a software load balancer in the cloud.

• No significant data storage or bandwidth needs (different bandwidth or storage needs can
have a significant impact on this calculation).

• The low end of the cost spectrum for each of the options (in particular, some managed
services providers will charge up to three times the costs listed in the table for the same
infrastructure).

• Net costs denominated in today’s dollars (in other words, don’t worry about inflation).

• A cost of capital of 10% (cost of capital is what you could have done with all of the up-
front cash instead of sinking it into a server and setup fees—basically the money’s interest
rate plus opportunity costs).

• The use of third-party cloud management tools such as enStratus or RightScale,
incorporated into the cloud costs.

• Staff costs representing a fraction of an individual (this isolated infrastructure does not
demand a full-time employee under any model).

Perhaps the most controversial element of this analysis is what might appear to be an “apples
versus oranges” comparison on the load balancer costs. The reality is that this architecture
doesn’t really require a hardware load balancer except for extremely high-volume websites.
So you likely could get away with a software load balancer in all three options.

A software load balancer, however, is very problematic in both the internal IT and managed
services infrastructures for a couple of reasons:

• A normal server is much more likely to fail than a hardware load balancer. Because it is
much harder to replace a server in the internal IT and managed services scenarios, the loss
of that software load balancer is simply unacceptable in those two scenarios, whereas it
would go unnoticed in the cloud scenario.

• If you are investing in actual hardware, you may want a load balancer that will grow with
your IT needs. A hardware load balancer is much more capable of doing that than a
software load balancer. In the cloud, however, you can cheaply add dedicated software
load balancers, so it becomes a nonissue.

In addition, some cloud providers (GoGrid, for example) include free hardware load balancing,
which makes the entire software versus hardware discussion moot. Furthermore, Amazon is
scheduled to offer its own load-balancing solution at some point in 2009. Nevertheless, if you
don’t buy into my rationale for comparing the hardware load balancers against the software

C L O U D C O M P U T I N G 15

Download at WoweBook.Com

load balancers, here is the comparison using all software load balancers: $134K for internal IT,
$92K for managed services, and $106K for a cloud environment.

The bottom line

If we exclude sunk costs, the right managed services option and cloud computing are always
financially more attractive than managing your own IT. Across all financial metrics—capital
requirements, total cost of ownership, complexity of costs—internal IT is always the odd man
out.

As your infrastructure becomes more complex, determining whether a managed services
infrastructure, a mixed infrastructure, or a cloud infrastructure makes more economic sense
becomes significantly more complex.

If you have an application that you know has to be available 24/7/365, and even 1 minute of
downtime in a year is entirely unacceptable, you almost certainly want to opt for a managed
services environment and not concern yourself too much with the cost differences (they may
even favor the managed services provider in that scenario).

On the other hand, if you want to get high-availability on the cheap, and 99.995% is good
enough, you can’t beat the cloud.

URQUHART ON BARRIERS TO EXIT
In November 2008, James Urquhart and I engaged in a Twitter discussion§ relating to the total cost
of ownership of cloud computing (James is a market manager for the Data Center 3.0 strategy at Cisco
Systems and member of the CNET blog network). What we realized is that I was looking at the problem
from the perspective of starting with a clean slate; James was looking at the problem from the reality
of massive existing investments in IT. What follows is a summary of our discussion that James has
kindly put together for this book.

While it is easy to get enthusiastic about the economics of the cloud in “green-field” comparisons,
most modern medium-to-large enterprises have made a significant investment in IT infrastructure
that must be factored into the cost of moving to the cloud.

These organizations already own the racks, cooling, and power infrastructure to support new
applications, and will not incur those capital costs anew. Therefore, the cost of installing and
operating additional servers will be significantly less than in the examples.

In this case, these investments often tip the balance, and it becomes much cheaper to use existing
infrastructure (though with some automation) to deliver relatively stable capacity loads. This existing
investment in infrastructure therefore acts almost as a “barrier-to-exit” for such enterprises
considering a move to the cloud.

§ http://blog.jamesurquhart.com/2008/12/enterprise-barrier-to-exit-to-cloud.html

16 C H A P T E R O N E

Download at WoweBook.Com

http://blog.jamesurquhart.com/2008/12/enterprise-barrier-to-exit-to-cloud.html

Of course, there are certain classes of applications that even a large enterprise will find more cost
effective to run in the cloud. These include:

• Applications with widely varying loads, for which peak capacity is hard to predict, and for
which purchasing for peak load would be inefficient most of the time anyway.

• Applications with occasional or periodic load spikes, such as tax processing applications or
retail systems hit hard prior to the holidays. The cloud can provide excess capacity in this case,
through a technique called “cloudbursting.”

• New applications of the type described in this book that would require additional data center
space or infrastructure investment, such as new cooling or power systems.

It seems to me highly ironic—and perhaps somewhat unique—that certain aspects of the cloud
computing market will be blazed not by organizations with multiple data centers and thousands
upon thousands of servers, but by the small business that used to own a few servers in a server hotel
somewhere that finally shut them down and turned to Amazon. How cool is that?

Cloud Infrastructure Models
We have talked about a number of the technologies that make up cloud computing and the
general value proposition behind the cloud. Before we move into building systems in the cloud,
we should take a moment to understand a variety of cloud infrastructure models. I will spend
the most time on the one most people will be working with, Amazon Web Services. But I also
touch on a few of the other options.

It would be easy to contrast these services if there were fine dividing lines among them, but
instead, they represent a continuum from managed services through something people call
Infrastructure as a Service (IaaS) to Platform as a Service (PaaS).

Platform As a Service Vendor

PaaS environments provide you with an infrastructure as well as complete operational and
development environments for the deployment of your applications. You program using the
vendor’s specific application development platform and let the vendor worry about all
deployment details.

The most commonly used example of pure PaaS is Google App Engine. To leverage Google
App Engine, you write your applications in Python against Google’s development frameworks
with tools for using the Google filesystem and data repositories. This approach works well for
applications that must be deployed rapidly and don’t have significant integration requirements.

The downside to the PaaS approach is vendor lock-in. With Google, for example, you must
write your applications in the Python programming language to Google-specific APIs.

C L O U D C O M P U T I N G 17

Download at WoweBook.Com

Python is a wonderful programming language—in fact, my favorite—but it isn’t a core
competency of most development teams. Even if you have the Python skills on staff, you still
must contend with the fact that your Google App Engine application may only ever work well
inside Google’s infrastructure.

Infrastructure As a Service

The focus of this book is the idea of IaaS. I spend a lot of time in this book using examples from
the major player in this environment, Amazon Web Services. A number of significant AWS
competitors exist who have different takes on the IaaS problem. These different approaches
have key value propositions for different kinds of cloud customers.

AWS is based on pure virtualization. Amazon owns all the hardware and controls the network
infrastructure, and you own everything from the guest operating system up. You request
virtual instances on-demand and let them go when you are done. Amazon sees one of its key
benefits is a commitment to not overcommitting resources to virtualization.

AppNexus represents a different approach to this problem. As with AWS, AppNexus enables
you to gain access to servers on demand. AppNexus, however, provides dedicated servers with
virtualization on top. You have the confidence in knowing that your applications are not
fighting with anyone else for resources and that you can meet any requirements that demand
full control over all physical server resources.

Hybrid computing takes advantage of both worlds, offering virtualization where appropriate
and dedicated hardware where appropriate. In addition, most hybrid vendors such as
Rackspace and GoGrid base their model on the idea that people still want a traditional data
center—they just want it in the cloud.

As we examine later in this book, there are a number of reasons why a purely virtualized
solution might not work for you:

• Regulatory requirements that demand certain functions operate on dedicated hardware

• Performance requirements—particularly in the area of I/O—that will not support portions
of your application

• Integration points with legacy systems that may lack any kind of web integration strategy

A cloud approach tied more closely to physical hardware may meet your needs in such cases.

Private Clouds

I am not a great fan of the term private clouds, but it is something you will often hear in
reference to on-demand virtualized environments in internally managed data centers. In a
private cloud, an organization sets up a virtualization environment on its own servers, either
in its own data centers or in those of a managed services provider. This structure is useful for

18 C H A P T E R O N E

Download at WoweBook.Com

companies that either have significant existing IT investments or feel they absolutely must have
total control over every aspect of their infrastructure.

The key advantage of private clouds is control. You retain full control over your infrastructure,
but you also gain all of the advantages of virtualization. The reason I am not a fan of the term
“private cloud” is simply that, based on the criteria I defined earlier in this chapter, I don’t see
a private cloud as a true cloud service. In particular, it lacks the freedom from capital investment
and the virtually unlimited flexibility of cloud computing. As James Urquhart noted in his
“Urquhart on Barriers to Exit” on page 16, I also believe that private clouds may become an
excuse for not moving into the cloud, and could thus put the long-term competitiveness of an
organization at risk.

All of the Above

And then there is Microsoft Azure. Microsoft Azure represents all aspects of cloud computing,
from private clouds up to PaaS. You write your applications using Microsoft technologies
and can deploy them initially in a private cloud and later migrate them to a public cloud.
Like Google App Engine, you write applications to a proprietary application development
framework. In the case of Azure, however, the framework is based on the more
ubiquitous .NET platform and is thus more easily portable across Microsoft environments.

An Overview of Amazon Web Services
My goal in this book is to stick to general principles you can apply in any cloud environment.
In reality, however, most of you are likely implementing in the AWS environment. Ignoring
that fact is just plain foolish; therefore, I will be using that AWS environment for the examples
used throughout this book.

AWS is Amazon’s umbrella description of all of their web-based technology services. It
encompasses a wide variety of services, all of which fall into the concept of cloud computing
(well, to be honest, I have no clue how you categorize Amazon Mechanical Turk). For the
purposes of this book, we will leverage the technologies that fit into their Infrastructure
Services:

• Amazon Elastic Cloud Compute (Amazon EC2)

• Amazon Simple Storage Service (Amazon S3)

• Amazon Simple Queue Service (Amazon SQS)

• Amazon CloudFront

• Amazon SimpleDB

Two of these technologies—Amazon EC2 and Amazon S3—are particularly interesting in the
context of transactional systems.

C L O U D C O M P U T I N G 19

Download at WoweBook.Com

As I mentioned earlier, message queues are critical in grid computing and are also useful in
many kinds of transactional systems. They are not, however, typical across web applications,
so Amazon SQS will not be a focus in this book.

Given that the heart of a transactional system is a database, you might think Amazon SimpleDB
would be a critical piece for a transactional application in the Amazon cloud. In reality,
however, Amazon SimpleDB is—as its name implies—simple. Therefore, it’s not well suited to
large-scale web applications. Furthermore, it is a proprietary database system, so an application
too tightly coupled to Amazon SimpleDB is stuck in the Amazon cloud.

Amazon Elastic Cloud Compute (EC2)

Amazon EC2 is the heart of the Amazon cloud. It provides a web services API for provisioning,
managing, and deprovisioning virtual servers inside the Amazon cloud. In other words, any
application anywhere on the Internet can launch a virtual server in the Amazon cloud with a
single web services call.

At the time of this writing, Amazon’s EC2 U.S. footprint spans three data centers on the East
Coast of the U.S. and two in Western Europe. You can sign up separately for an Amazon
European data center account, but you cannot mix and match U.S. and European
environments. The servers in these environments run a highly customized version of the Open
Source Xen hypervisor using paravirtualization. This Xen environment enables the dynamic
provisioning and deprovisioning of servers, as well as the capabilities necessary to provide
isolated computing environment for guest servers.

When you want to start up a virtual server in the Amazon environment, you launch a new
node based on a predefined Amazon machine image (AMI). The AMI includes your operating
system and any other prebuilt software. Most people start with a standard AMI based on their
favorite operating system, customize it, create a new image, and then launch their servers based
on their custom images.

By itself, EC2 has two kinds of storage:

• Ephemeral storage tied to the node that expires with the node

• Block storage that acts like a SAN and persists across time

Many competitors to Amazon also provide persistent internal storage for nodes to make them
operate more like a traditional data center.

In addition, servers in EC2—like any other server on the Internet—can access Amazon S3 for
cloud-based persistent storage. EC2 servers in particular see both cost savings and greater
efficiencies in accessing S3.

To secure your network within the cloud, you can control virtual firewall rules that define how
traffic can be filtered to your virtual nodes. You define routing rules by creating security groups
and associating the rules with those groups. For example, you might create a DMZ group that

20 C H A P T E R O N E

Download at WoweBook.Com

allows port 80 and port 443 traffic from the public Internet into its servers, but allows no other
incoming traffic.

Amazon Simple Storage Service (S3)

Amazon S3 is cloud-based data storage accessible in real time via a web services API from
anywhere on the Internet. Using this API, you can store any number of objects—ranging in
size from 1 byte to 5 GB—in a fairly flat namespace.

It is very important not to think of Amazon S3 as a filesystem. I have seen too many people
get in trouble when they expect it to act that way. First of all, it has a two-level namespace. At
the first level, you have buckets. You can think of these buckets as directories, if you like, as
they store the data you put in S3. Unlike traditional directories, however, you cannot organize
them hierarchically—you cannot put buckets in buckets. Perhaps more significant is the fact
that the bucket namespace is shared across all Amazon customers. You need to take special
care in designing bucket names that will not clash with other buckets. In other words, you
won’t be creating a bucket called “Documents”.

Another important thing to keep in mind is that Amazon S3 is relatively slow. Actually, it is
very fast for an Internet-deployed service, but if you are expecting it to respond like a local
disk or a SAN, you will be very disappointed. Therefore, it is not feasible to use Amazon S3 as
an operational storage medium.

Finally, access to S3 is via web services, not a filesystem or WebDAV. As a result, applications
must be written specifically to store data in Amazon S3. Perhaps more to the point, you can’t
simply rsync a directory with S3 without specially crafted tools that use the Amazon API and
skirt the S3 limitations.

I have spent enough text describing what Amazon S3 is not—so what is it?

Amazon S3 enables you to place persistent data into the cloud and retrieve it at a later date
with a near certainty that it will be there in one consistent piece when you get it back. Its key
benefit is that you can simply continue to shove data into Amazon S3 and never worry about
running out of storage space. In short, for most users, S3 serves as a short-term or long-term
backup facility.

CLEVERSAFE STORAGE
Cloud storage systems have unique challenges that legacy storage technologies cannot address.
Storage technologies based on RAID and replication are not well suited for cloud infrastructures
because they don’t scale easily to the exabyte level. Legacy storage technologies rely on redundant
copies to increase reliability, resulting in systems that are not easily manageable, chew up
bandwidth, and are not cost effective.

C L O U D C O M P U T I N G 21

Download at WoweBook.Com

Cleversafe’s unique cloud storage platform—based on company technology trademarked under
the name Dispersed Storage—divides data into slices and stores them in different geographic
locations on hardware appliances. The algorithms used to divide the data are comparable to the
concept of parity—but with much more sophistication—because they allow the total data to be
reconstituted from a subset. For instance, you may store the data in 12 locations, any 8 of which are
enough to restore it completely. This technology, known as information dispersal, achieves
geographic redundancy and high availability without expensive replication of the data.

In April 2008, Cleversafe embodied its dispersal technology in hardware appliances that provide a
front-end to the user using standard protocols such as REST APIs or iSCSI. The appliances take on
the task of splitting and routing the data to storage sites, and merely increase the original file size
by 1.3 to 1.6 times, versus 3 times in a replicated system.

Companies are using Cleversafe’s Dispersed Storage appliances to build public and private cloud
storage as a backend infrastructure to Software as a Service. Dispersed Storage easily fulfills the
characteristics of a cloud infrastructure since it provides storage on demand and accessibility
anywhere.

Dispersal also achieves higher levels of security within the cloud without necessarily needing
encryption, because each slice contains too little information to be useful. This unique architecture
helps people satisfy their concern over their data being outside of their immediate control, which
often becomes a barrier to storage decisions. While a lost backup tape contains a full copy of data,
access to a single appliance using Dispersed Storage results in no data breach.

Additionally, Dispersed Storage is massively scalable and designed to handle petabytes of data. By
adding servers into the storage cloud with automated storage discovery, the total storage of the
system can easily grow, and performance can be scaled by simply adding additional appliances.
Virtualization tools enable easy deployment and on-demand provisioning. All of these capabilities
streamline efforts for storage administrators.

Dispersed Storage is also designed to store and distribute large objects, the cornerstone of our media-
intensive society that has become dependent on videos and images in every aspect of life. Dispersal
is inherently designed for content distribution by naturally incorporating load balancing through
the multitude of access choices for selecting the slices used to reconstruct the original file. This
means companies do not have to deal with or pay for implementing a separate content delivery
network for their stored data.

Dispersed Storage offers a novel and needed approach to cloud storage, and will be significant as
cloud storage matures and displaces traditional storage methods.

22 C H A P T E R O N E

Download at WoweBook.Com

Amazon Simple Queue Service (SQS)

Amazon SQS is a cornerstone to any Amazon-based grid computing effort. As with any message
queue service, it accepts messages and passes them on to servers subscribing to the message
queue.

A messaging system typically enables multiple computers to exchange information in complete
ignorance of each other. The sender simply submits a short message (up to 8KB in Amazon
SQS) into the queue and continues about its business. The recipient retrieves the message from
the queue and acts upon the contents of the message.

A message, for example, can be, “Process data set 123.csv in S3 bucket s3://fancy-bucket and
submit the results to message queue Y.” One advantage of a message queue system is that the
sender does not need to identify a recipient or perform any error handling to deal with
communication failures. The recipient does not even need to be active at the time the message
is sent.

The Amazon SQS system fits well into a cloud computing environment due to its simplicity.
Most systems requiring a message queue need only a simple API to submit a message, retrieve
it, and trust the integrity of the message within the queue. It can be a tedious task to develop
and maintain something this simple, but it is also way too complex and expensive to use many
of the commercial message queue packages.

Amazon CloudFront

Amazon CloudFront, a cloud-based content distribution network (CDN), is a new offering from
Amazon Web Services at the time of this writing. It enables you to place your online content
at the edges of the network, meaning that content is delivered from a location close to the user
requesting it. In other words, a site visitor from Los Angeles can grab the same content from
an Amazon server in Los Angeles that a visitor from New York is getting from a server in New
York. You place the content in S3 and it gets moved to the edge points of the Amazon network
for rapid delivery to content consumers.

Amazon SimpleDB

Amazon SimpleDB is an odd combination of structured data storage with higher reliability than
your typical MySQL or Oracle instance, and very baseline relational storage needs. It is very
powerful for people concerned more with the availability of relational data and less so with
the complexity of their relational model or transaction management. In my experience, this
audience is a very small subset of transactional applications—though it could be particularly
useful in heavy read environments, such as web content management systems.

C L O U D C O M P U T I N G 23

Download at WoweBook.Com

The advantages of Amazon SimpleDB include:

• No need for a database administrator (DBA)

• A very simple web services API for querying the data

• Availability of a clustered database management system (DBMS)

• Very scalable in terms of data storage capabilities

If you need the power of a relational database, Amazon SimpleDB is not an appropriate tool.
On the other hand, if your idea of an application database is bdb, Amazon SimpleDB will be
the perfect tool for you.

24 C H A P T E R O N E

Download at WoweBook.Com

C H A P T E R T W O

Amazon Cloud Computing

AS I MENTIONED IN THE PREVIOUS CHAPTER, this book is a far-ranging, general guide for
developers and systems administrators who are building transactional web applications in any
cloud. As I write this book, however, the term “cloud infrastructure” is largely synonymous
with Amazon EC2 and Amazon S3 for a majority of people working in the cloud. This reality
combined with my use of Amazon cloud examples demands an overview of cloud computing
specifically in the Amazon cloud.

Amazon S3
Amazon Simple Storage Service (S3) is cloud-based persistent storage. It operates
independently from other Amazon services. In fact, applications you write for hosting on your
own servers can leverage Amazon S3 without any need to otherwise “be in the cloud.”

When Amazon refers to S3 as “simple storage,” they are referring to the feature set—not its
ease of use. Amazon S3 enables you to simply put data in the cloud and pull it back out. You
do not need to know anything about how it is stored or where it is actually stored.

You are making a terrible mistake if you think of Amazon S3 as a remote filesystem. Amazon
S3 is, in many ways, much more primitive than a filesystem. In fact, you don’t really store
“files”—you store objects. Furthermore, you store objects in buckets, not directories. Although
these distinctions may appear to be semantic, they include a number of important differences:

25

Download at WoweBook.Com

• Objects stored in S3 can be no larger than 5 GB.

• Buckets exist in a flat namespace shared among all Amazon S3 users. You cannot create
“sub-buckets,” and you must be careful of namespace clashes.

• You can make your buckets and objects available to the general public for viewing.

• Without third-party tools, you cannot “mount” S3 storage. In fact, I am not fond of the
use of third-party tools to mount S3, because S3 is so conceptually different from a
filesystem that I believe it is bad form to treat it as such.

Access to S3

Before accessing S3, you need to sign up for an Amazon Web Services account. You can ask
for default storage in either the United States or Europe. Where you store your data is not
simply a function of where you live. As we discuss later in this book, regulatory and privacy
concerns will impact the decision of where you want to store your cloud data. For this chapter,
I suggest you just use the storage closest to where your access to S3 will originate.

Web Services

Amazon makes S3 available through both a SOAP API and a REST API. Although developers
tend to be more familiar with creating web services via SOAP, REST is the preferred mechanism
for accessing S3 due to difficulties processing large binary objects in the SOAP API. Specifically,
SOAP limits the object size you can manage in S3 and limits any processing (such as a transfer
status bar) you might want to perform on the data streams as they travel to and from S3.

The Amazon Web Services APIs support the ability to:

• Find buckets and objects

• Discover their metadata

• Create new buckets

• Upload new objects

• Delete existing buckets and objects

When manipulating your buckets, you can optionally specify the location in which the bucket’s
contents should be stored.

Unless you need truly fine-grained control over interaction with S3, I recommend using an
API wrapper for your language of choice that abstracts out the S3 REST API. My teams use
Jets3t when doing Java development.

For the purposes of getting started with Amazon S3, however, you will definitely want to
download the s3cmd command-line client for Amazon S3 (http://s3tools.logix.cz/s3cmd). It
provides a command-line wrapper around the S3 access web services. This tool also happens

26 C H A P T E R T W O

Download at WoweBook.Com

http://s3tools.logix.cz/s3cmd

to be written in Python, which means you can read the source to see an excellent example of
writing a Python application for S3.

BitTorrent

Amazon also provides BitTorrent access into Amazon S3. BitTorrent is a peer-to-peer (P2P)
filesharing protocol. Because BitTorrent is a standard protocol for sharing large binary assets,
a number of clients and applications exist on the market to consume and publish data via
BitTorrent. If your application can leverage this built-in infrastructure, it may make sense to
take advantage of the Amazon S3 BitTorrent support. In general, however, transactional web
applications won’t use BitTorrent to interact with S3.

S3 in Action

To illustrate S3 in action, we will use the s3cmd utility to transfer files in and out of S3. The
commands supported by this tool are mirrors of the underlying web services APIs. Once you
download the utility, you will need to configure it with your S3 access key and S3 secret key.
Whether you are using this tool or another tool, you will always need these keys to access your
private buckets in S3.

The first thing you must do with Amazon S3 is create a bucket in which you can store objects:

s3cmd mb s3://BUCKET

This command creates a bucket with the name you specify. As I noted earlier in the chapter,
the namespace for your bucket is shared across all Amazon customers. Unless you are the first
person to read this book, it is very unlikely that the command just shown will succeed unless
you replace the name BUCKET with something likely to be unique to you. Many users prefix
their buckets with something unique to them, such as their domain name. Keep in mind,
however, that whatever standard you pick, nothing stops other users from stepping over your
naming convention.

BUCKET NAMING
I have already cautioned you on a number of occasions regarding the flat bucket namespace. You
are probably wondering how you can work under such naming constraints.

First, keep in mind the following naming rules:

• Names may contain only lowercase letters, numbers, periods, underscores, and dashes, and
they must start with a number or a letter.

• A name cannot be in the style of an IP address (in other words, not 10.0.0.1).

• A name must be at least 3 characters long and be no more than 255 characters long.

A M A Z O N C L O U D C O M P U T I N G 27

Download at WoweBook.Com

You will want to name your buckets in such a way that you will create your own virtual bucket
namespace. For example, com.imaginary.mybucket is likely to be available to me because I own
the domain imaginary.com. It is important to note, however, that nothing guarantees that no one else
will use your domain (or whatever other naming convention you use) as a prefix for their bucket
names. Your applications therefore need to be intelligent when creating new buckets and should
not be fixed to a particular naming scheme.

When naming a bucket, Amazon suggests the following naming guidelines to enhance your ability
to create valid URLs for S3 objects:

• You should not name buckets using underscores (even though it is allowed).

• You should ideally limit bucket names to 63 characters.

• You should not end a bucket name with a dash, nor should you have a name that has a dash
followed by a period.

Once you have created a bucket, it’s time to stick things in it:

s3cmd put LOCAL_FILE s3://BUCKET/S3FILE

For example:

s3cmd put home_movie.mp4 s3://com.imaginary.movies/home_movie.mp4

The s3cmd utility limits your files to 5 GB in size because of the S3 limit mentioned earlier.
Later in the book, we will discuss appropriate strategies for getting around this limitation and
providing a higher level of security and integrity management around your S3 objects.

You can then get the object out of the cloud:

s3cmd get s3://BUCKET/S3FILE LOCAL_FILE

For example:

s3cmd get s3://com.imaginary.movies/home_movie.mp4 home_movies3.mp4

You should now have your home movie back on your desktop.

The following are other commands you can leverage:

• List all of your buckets: s3cmd ls

• List the contents of a specific bucket: s3cmd ls s3://BUCKET

• Delete an object from a bucket: s3cmd del s3://BUCKET/S3FILE

• Delete a bucket: s3cmd rb s3://BUCKET

You can delete a bucket only if it is empty. You must first delete the contents one by one and
then delete the bucket. The s3cmd soon will have a --recursive option to the del command,
but you should be aware that it is simply listing the contents of the target bucket and deleting

28 C H A P T E R T W O

Download at WoweBook.Com

them one by one. If you are using the web services API, you will need to write your own
recursive delete when deleting a bucket that contains objects.

Amazon EC2
When most people think of the Amazon cloud, they are thinking about Amazon EC2. EC2
represents your virtual network with all of the virtual servers running inside that network. It
does not, however, stand alone. When you use EC2, you will be using S3 to store your machine
images (more on that in a minute) and potentially for other storage needs. If you skipped the
previous section, thinking you did not need to know about S3, go back and read it!

EC2 Concepts

EC2 is quite a bit more complex than S3. Figure 2-1 shows all of the concepts that make up
Amazon EC2 and how they relate to each other.

The main concepts are:

Instance
An EC2 instance is a virtual server running your choice of guest operating system based
on the machine image from which the instance was cloned.

Region (e.g., United States/East Coast)

Availability zone (e.g., us-east-1a)

Security group

AMI
1 0..1

0..* 0..*

0..1

0..1

1

0..*

Instance

Elastic
IP

Volume

Snapshot

FIGURE 2-1. An overview of the components that support Amazon EC2

A M A Z O N C L O U D C O M P U T I N G 29

Download at WoweBook.Com

Amazon Machine Image (AMI)
A pristine copy of your server that you can use to launch any number of instances. If you
are familiar with the concept of ghosting, the machine image represents your ghost image
from which you can build any number of servers. Minimally, a machine image will have
the core operating system plus common preinstalled tools. Depending on your deployment
strategy, it might have your prebuilt web application. Amazon has prebuilt AMIs to get
you started. In addition, there are many third-party AMIs, and you can build your own.

Elastic IP address
This is simply a static IP address that is assigned to you. (The term “elastic” may be
confusing: rest assured that this term refers to a static address, not a dynamic one.) By
default, each Amazon instance comes with a dynamically assigned IP address that may be
reassigned to another user when your instance terminates. Elastic IP addresses are
reserved to you and thus useful for instances that must always be accessible by the same
static IP address.

Region
A group of availability zones that form a single geographic cluster. At the time of this book’s
publication, Amazon’s service level agreement (SLA) for EC2 guarantees 99.95%
availability of at least two availability zones within a region over the course of a 12-month
period.

Availability zone
Roughly analogous to a data center. Two availability zones are guaranteed not to share
any common points of failure. Amazon currently has three zones in the U.S., all on the
East Coast. It also has two zones in Western Europe. You may optionally define the
availability zone into which you launch your instances to create a level of locational
redundancy for your applications.

Security group
Very roughly analogous to a network segment governed by a firewall. You launch your
instances into security groups and, in turn, the security groups define what can talk to
your new instances.

Block storage volume
Conceptually similar to a SAN, it provides block-level storage that you can mount from
your EC2 instances. You can then format the volume as you like, or write raw to the
volume. You can even leverage multiple volumes together as a virtual RAID.

Snapshot
You may take “snapshots” whenever you like of your block volumes for backup or
replication purposes. These snapshots are stored in Amazon S3, where they can be used
to create new volumes.

30 C H A P T E R T W O

Download at WoweBook.Com

MACHINE IMAGES VERSUS INSTANCES
When getting started with Amazon EC2, you should not be discouraged if the distinction between
machine images (AMIs) and instances is not entirely clear. It is very important, however, to
understand the distinction because your machine image management strategy will be critical to
your long-term success in the cloud.

A machine image is the prototype from which your virtual servers are created. Perhaps the best way
to conceptualize a machine image is to think of it as a copy of your server’s hard drive that gets
cloned onto a new server just before it is launched. That “new server” is your instance. Each time
you launch an instance, EC2 copies the machine image onto a new instance’s virtual hard drive and
then boots up the instance. You can create any number of running instances from a single machine
image.

To use a developer analogy, if you think of your machine image as a class in a programming language,
the EC2 instance is an object instance.

EC2 Access

Like Amazon S3, the primary means of accessing Amazon EC2 is through a web services API.
Amazon provides a number of interactive tools on top of their web services API, including:

• The Amazon Web Services Console (http://console.aws.amazon.com; see Figure 2-2)

• The ElasticFox Firefox plug-in

• The Amazon Command Line tools

Once your use of Amazon matures, you will likely use robust infrastructure management tools
such as enStratus and RightScale. As you are getting started, however, you will probably use
a combination of the tools Amazon provides. The examples throughout the rest of this chapter
focus on the command-line tools available at http://developer.amazonwebservices.com/
connect/entry.jspa?externalID=351. Once you get the command-line tools down, everything
else is simple. Regardless of the tools you ultimately use, however, you will always have a need
for the command line.

Instance Setup

The simplest thing you can do in EC2 is launch an instance. This action dynamically sets up a
server and makes it available for your use.

A M A Z O N C L O U D C O M P U T I N G 31

Download at WoweBook.Com

http://console.aws.amazon.com
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351

You launch an instance from an (AMI) stored in S3. Amazon provides a number of prebuilt
machine images, and you can buy access to commercial ones. Once you have developed a level
of comfort with EC2, you can even create and register your own machine images.

W A R N I N G
Because your machine images are stored in Amazon S3, you cannot launch a new EC2

instance when Amazon S3 is unavailable.

Through the command-line utilities, you can see what machine images are readily available
to you:

ec2-describe-images -o amazon

The -o amazon option tells the command to look for all machine images owned by Amazon.
When you are getting started, you will likely leverage one of these standard images or a
standard image from another vendor. Once you have customized those images, you will build
your own images and register them. To see what images you have registered, enter:

ec2-describe-images

The output looks something like this:

IMAGE ami-225fba4b ec2-public-images/fedora-core4-apache-mysql-
v1.07.manifest.xml amazon available public i386 machine

FIGURE 2-2. The Amazon Web Services Console

32 C H A P T E R T W O

Download at WoweBook.Com

The second element in the output is the image ID. You need this value to refer to the image in
all other contexts, whether you are using the command-line tools or the web services API.

The third element is the S3 object that represents the machine image’s manifest file. The
manifest file describes the machine image to EC2. In this example, ec2-public-images is the
bucket in which the image is stored, and fedora-core4-apache-mysql-v1.07.manifest.xml is
the object representing the image’s manifest file.

The fourth element is the owner of the machine image—in this case, Amazon. The fifth element
describes the state of the image. The sixth element identifies whether the image is publicly
available or private.

The seventh element, i386, identifies the target architecture for the image. Amazon currently
supports two architectures: 32-bit Intel (i386) and 64-bit Intel (x86_64).

The final element identifies what kind of image this image represents: machine, ramdisk, or
kernel. For now, we will concern ourselves only with machine images.

SELECTING AN AMI
The selection of a starter AMI in EC2 used to be simple. Today, however, you have a wide variety of
Amazon-built and third-party AMIs from which to choose. It’s often hard to tell which AMIs are
reputable, which are junk, and which might include Trojans or backdoors. Fortunately, Amazon does
provide a catalog with reviews and ratings at http://aws.amazon.com/amis. The starting point is
often your favorite flavor of Linux (though other kinds of Unix are currently available, and even
Windows). Identify someone who has put together a solid, minimalist version of your distribution
targeted at your desired architecture and leverage that AMI as your base. I am personally fond of
the Ubuntu builds created by Eric Hammond.

Whatever you choose, you should start out as basic as possible and gradually install only the utilities
and services that are absolutely necessary to support your web application. Before going nuts with
installations, harden your server using a tool such as Bastille (http://www.bastille-unix.org) and then
revisit the hardening once you are done installing custom applications. For more details on securing
your Amazon instances, see Chapter 5.

Once you have picked out the right machine image, it is time to launch a virtual server instance
based on that machine image:

ec2-run-instances AMI_ID

For example:

$ ec2-run-instances ami-1fd73376

A M A Z O N C L O U D C O M P U T I N G 33

Download at WoweBook.Com

http://aws.amazon.com/amis
http://www.bastille-unix.org

You will receive either an error message or information about the reservation for your new
instance:

RESERVATION r-3d01de54 1234567890123 default
INSTANCE i-b1a21bd8 ami-1fd73376 pending 0
 m1.small 2008-10-22T16:10:38+0000 us-east-1a aki-a72cf9ce
 ari-a52cf9cc

The distinction between a reservation and instance is not so obvious in this trivial example, in
which I have started a single instance. When you attempt to run instances, you can specify a
minimum and maximum number of instances to launch—not just a single instance. The
command returns with a reservation that describes how many instances could actually be
launched with that one request.

For example, you may be launching new application servers to help distribute website load as
a heavy part of the day is approaching. If you want to launch 10 instances to support the
increased demand, you may encounter the possibility that the resources for all 10 instances
may not be available at exactly that instant in any single availability zone. If you requested 10
when not all 10 were available, the request would fail. You can, however, request a minimum
of 5 with a maximum of 10. As long as enough resources for at least 5 instances are available,
the command will succeed. The reservation thus describes the successfully launched instances.

Some important things to note from the instance description include:

i-b1a21bd8

The instance ID. You use it with other commands and the web services API to refer to the
instance.

ami-1fd73376

The machine image ID of the AMI you used to launch the instance.

pending

The current state of the instance. Other possible values are running, shutting down, and
terminated.

m1.small

Which EC2 instance type you are running. The instance types specify how much RAM,
disk space, and CPU your instance has allocated to it. The m1.small type is the very baseline
instance.

us-east-1a

The availability zone into which the instance was launched. Because we did not specify
an availability zone at the command line, EC2 picked the best availability zone to launch
into based on current usage. I will dive deeper into availability zones later in this chapter.

At this point, you wait. It may take up to 10 minutes for your instance to become available.
While you wait, Amazon is allocating the resources for the instance and then booting it up.
You can check on the status using the ec2-describe-instances command:

ec2-describe-instances [INSTANCE_ID]

34 C H A P T E R T W O

Download at WoweBook.Com

For example:

$ ec2-describe-instances i-b1a21bd8
RESERVATION r-3d01de54 1234567890123 default
INSTANCE i-b1a21bd8 ami-1fd73376 ec2-75-101-201-11.compute-1.amazonaws.com
 domU-12-31-38-00-9D-44.compute-1.internal running 0
 m1.small 2008-08-11T14:39:09+0000 us-east-1c aki-a72cf9ce
 ari-a52cf9cc

This output shows that the instance is now in a “running” state. In other words, you can access
it, but there is one little problem: you don’t have a user account on the machine.

Before I tell you how to get a shell account on the machine, you should first understand what
other information you have about the instance now that it is running.

The output of the ec2-describe-instances command is almost identical to the ec2-run-
instances command, except that it now provides you with the public IP address and private IP
address of the instance because the instance is now in a “running” state. When an instance is
launched, Amazon will dynamically assign one public and one private IP address to that
instance. You should use the public IP address to access the instance from outside the cloud
and the private address to access it from inside the cloud.

Access to an Instance

As I mentioned already, you won’t be able to access a newly launched EC2 instance until you
have an account on it. So let’s terminate it and launch a different instance to which you will
have access:

$ ec2-terminate-instances i-b1a21bd8

Since you are using a prebuilt machine instance, you obviously will not have any user accounts
on that image when it comes up. Furthermore, it would be a huge security hole for Amazon
(or anyone else) to create default accounts with common passwords like “scott”/“tiger”.

The trick is to generate an SSH keypair.The private key will sit on your local hard drive, whereas
the public key is passed to the instance when you launch it. EC2 will configure the instance
so that the “root” account is accessible to any user with your private key.

Before you launch the new instance, you need to generate a keypair:

ec2-add-keypair KEYPAIR_NAME

For example:

$ ec2-add-keypair mykeypair
KEYPAIR mykeypair 1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f
-----BEGIN RSA PRIVATE KEY-----
MIIEoQIBAAKCAQBuLFg5ujHrtm1jnutSuoO8Xe56LlT+HM8v/xkaa39EstM3/aFxTHgElQiJLChp
HungXQ29VTc8rc1bW0lkdi23OH5eqkMHGhvEwqa0HWASUMll4o3o/IX+0f2UcPoKCOVUR+jx71Sg
5AU52EQfanIn3ZQ8lFW7Edp5a3q4DhjGlUKToHVbicL5E+g45zfB95wIyywWZfeW/UUF3LpGZyq/
ebIUlq1qTbHkLbCC2r7RTn8vpQWp47BGVYGtGSBMpTRP5hnbzzuqj3itkiLHjU39S2sJCJ0TrJx5
i8BygR4s3mHKBj8l+ePQxG1kGbF6R4yg6sECmXn17MRQVXODNHZbAgMBAAECggEAY1tsiUsIwDl5

A M A Z O N C L O U D C O M P U T I N G 35

Download at WoweBook.Com

91CXirkYGuVfLyLflXenxfI50mDFms/mumTqloHO7tr0oriHDR5K7wMcY/YY5YkcXNo7mvUVD1pM
ZNUJs7rw9gZRTrf7LylaJ58kOcyajw8TsC4e4LPbFaHwS1d6K8rXh64o6WgW4SrsB6ICmr1kGQI7
3wcfgt5ecIu4TZf0OE9IHjn+2eRlsrjBdeORi7KiUNC/pAG23I6MdDOFEQRcCSigCj+4/mciFUSA
SWS4dMbrpb9FNSIcf9dcLxVM7/6KxgJNfZc9XWzUw77Jg8x92Zd0fVhHOux5IZC+UvSKWB4dyfcI
tE8C3p9bbU9VGyY5vLCAiIb4qQKBgQDLiO24GXrIkswF32YtBBMuVgLGCwU9h9HlO9mKAc2m8Cm1
jUE5IpzRjTedc9I2qiIMUTwtgnw42auSCzbUeYMURPtDqyQ7p6AjMujp9EPemcSVOK9vXYL0Ptco
xW9MC0dtV6iPkCN7gOqiZXPRKaFbWADp16p8UAIvS/a5XXk5jwKBgQCKkpHi2EISh1uRkhxljyWC
iDCiK6JBRsMvpLbc0v5dKwP5alo1fmdR5PJaV2qvZSj5CYNpMAy1/EDNTY5OSIJU+0KFmQbyhsbm
rdLNLDL4+TcnT7c62/aH01ohYaf/VCbRhtLlBfqGoQc7+sAc8vmKkesnF7CqCEKDyF/dhrxYdQKB
gC0iZzzNAapayz1+JcVTwwEid6j9JqNXbBc+Z2YwMi+T0Fv/P/hwkX/ypeOXnIUcw0Ih/YtGBVAC
DQbsz7LcY1HqXiHKYNWNvXgwwO+oiChjxvEkSdsTTIfnK4VSCvU9BxDbQHjdiNDJbL6oar92UN7V
rBYvChJZF7LvUH4YmVpHAoGAbZ2X7XvoeEO+uZ58/BGKOIGHByHBDiXtzMhdJr15HTYjxK7OgTZm
gK+8zp4L9IbvLGDMJO8vft32XPEWuvI8twCzFH+CsWLQADZMZKSsBasOZ/h1FwhdMgCMcY+Qlzd4
JZKjTSu3i7vhvx6RzdSedXEMNTZWN4qlIx3kR5aHcukCgYA9T+Zrvm1F0seQPbLknn7EqhXIjBaT
P8TTvW/6bdPi23ExzxZn7KOdrfclYRph1LHMpAONv/x2xALIf91UB+v5ohy1oDoasL0gij1houRe
2ERKKdwz0ZL9SWq6VTdhr/5G994CK72fy5WhyERbDjUIdHaK3M849JJuf8cSrvSb4g==
-----END RSA PRIVATE KEY-----

This command provides only you with the private key. You never see the public key, which is
added to your Amazon Web Services account for use when launching instances with this
keypair.

Copy this private key and save everything starting with the line “-----BEGIN RSA PRIVATE
KEY-----” and ending with the line “-----END RSA PRIVATE KEY----” into a file. How you
name the file or where you put it is not terribly important, but it is often useful to include the
name of the keypair in the filename: for instance, id-rsa_mykeypair. You also need to set
permissions on that file so that only you can read it. On Unix-compliant systems such as Linux
and Mac OS X, you would enter:

$ chmod 400 id_rsa-mykeypair

Now you can launch an instance that references your new keypair:

$ ec2-run-instances -k mykeypair ami-1fd73376
RESERVATION r-8a01de64 1234567890123 default
INSTANCE i-a7d32cc3 ami-1fd73376 pending
 mykeypair m1.small 2008-10-22T16:40:38+0000
 us-east-1a aki-a72cf9ce ari-a52cf9cc

You should note that the -k option is the name of your keypair, not the name of the file in
which you stored your private key.

The output looks much the same as before, except you have a new reservation ID and new
instance ID, and the “0” from the previous launch is now replaced with the string mykeypair to
indicate that the instance was launched with the public key for that keypair.

The public key is assigned to the “root” account on the new instance. In other words, you can
theoretically SSH into the box as “root” without typing any login information (it’s secure
because you have the private key on your local machine that matches up with the public key).
In practice, however, you still won’t be able to reach it, because the default rules for any
security group in EC2 deny all network access to instances in that security group.

36 C H A P T E R T W O

Download at WoweBook.Com

N O T E
At this point, those accustomed to the proven best practice of hardening an OS by locking

out the root account may be ready to jump through a window. We will discuss mechanisms

for removing the need to store any accounts on your AMI and enabling you to disable root

login later in Chapter 5.

Security Groups

The last element of the reservation listing in ec2-describe-instances (which is default in all our
examples so far) names the security group into which your instance was launched.

The closest real-world analogy to a security group is a network segment protected by a firewall.
When created, the firewall comes up with a single rule to deny all traffic from all sources to all
destinations on all ports.

For a number of reasons, it’s actually a terrible analogy. For the purposes of this chapter,
however, the analogy works and we will run with it.

A SECURITY GROUP ISN’T A NETWORK SEGMENT
For the purposes of this chapter, I am using the analogy of a network segment protected by a firewall
to describe security groups. Although the analogy works for this chapter, you should most definitely
not confuse a security group with a network segment. The following are some of the features of a
security group:

• Instances in the same security group do not share an IP block, either in terms of their public or
private IP addresses. In fact, they may even exist in different availability zones. As a result, you
cannot run applications that rely on multicast or broadcast traffic.

• Although you can put your server in “promiscuous mode,” the only network traffic you will
ever see is traffic in which your server is an endpoint. This feature significantly increases the
security of EC2, but it also makes implementing network intrusion detection systems difficult.

• Your “firewall” rules simply cover how traffic is allowed to route into the group. It does not
provide anti-virus protection or other kinds of content-based filtering.

• Instances within the same security group are not allowed to talk to each other unless you create
a rule that allows it.

• Once an instance is started, you cannot change its security group membership.

The practical impact is that you cannot access an instance in a new security group in any
manner until you grant access using the ec2-authorize command:

ec2-authorize GROUP_NAME [OPTIONS]

A M A Z O N C L O U D C O M P U T I N G 37

Download at WoweBook.Com

To get shell access to your new instance, you will need to open up the SSH port:

$ ec2-authorize default -p 22
PERMISSION default ALLOWS tcp 22 22 FROM CIDR 0.0.0.0/0

If this is going to be a web server, you will of course want to add HTTP and HTTPS access:

$ ec2-authorize default -p 80
PERMISSION default ALLOWS tcp 80 80 FROM CIDR 0.0.0.0/0
$ ec2-authorize default -p 443
PERMISSION default ALLOWS tcp 443 443 FROM CIDR 0.0.0.0/0

This output shows that access to the default security group now exists for the specified ports
from any place on the Internet (FROM CIDR 0.0.0.0/0 means any IP address).

W A R N I N G
I opened up SSH to the entire world for this example, but I do not mean to imply that this

is actually a good idea. In general, if at all possible, all rules should define a specific source.

Obviously, HTTP and HTTPS are generally open to the world, but almost everything else

should be closed off completely or selectively allowed.

To narrow access to a particular subnet of incoming traffic, you could have specified the source
(-s) IP address or subnet from which you and your development team will be accessing the
instance:

$ ec2-authorize default -P tcp -p 22 -s 10.0.0.1/32

That command will provide TCP access to port 22 only from 10.0.0.1. You should now have
SSH access to that server:

ssh -i PRIVATE_KEY_FILE root@PUBLIC_IP

In this case, you could enter:

$ ssh -i id_rsa-mykeypair root@ec2-75-101-201-11.compute-1.amazonaws.com

You will then be logged in as root on your new instance.

You are not limited to a single security group. You can create additional security groups using
the ec2-add-group command:

ec2-add-group GROUP -d DESCRIPTION

For example:

$ ec2-add-group mygroup -d MyGroup
GROUP mygroup MyGroup

Using multiple groups lets you define different rule sets for different kinds of instances—for
example, opening HTTP/HTTPS access to a load balancer group while totally closing off access
to an application server group, save for Tomcat modjk access from the load balancer group.

38 C H A P T E R T W O

Download at WoweBook.Com

We will be discussing the setup of security groups for solid web application security in
Chapter 5.

Availability Zones

One concept I glossed over earlier was availability zones. An availability zone maps roughly to
a physical data center. As I write this book, Amazon provides three availability zones in the
United States and two in Western Europe. The most important feature of an availability zone
is that any two availability zones have distinct physical infrastructures. Thus the failure of part
or all of one availability zone does not impact the other availability zones, except insofar as the
other availability zones will then start to take on support for systems formerly operating in the
impaired availability zone. Amazon’s SLA guarantees 99.95% availability of at least two
availability zones within a given region.

In our earlier examples, we saw the availability zone us-east-1a. This identifier is not for any
particular data center; us-east-1a for your Amazon account is probably different than my
account’s us-east-1a.

Understanding availability zones is important for a couple of reasons:

• When you launch one instance in one availability zone and another instance in a second
zone, you gain infrastructural redundancy. That is, one instance is almost certain to survive
the failure of the other instance, regardless of the reason for the failure.

• You pay for traffic between any two availability zones. In other words, if you have a
MySQL master in one availability zone and a slave in another, you pay bandwidth costs
for all of the data transfer between the master and slave. You do not pay for that traffic if
the two are in the same availability zone. On the other hand, you lose the high-availability
benefits of the master/slave setup if they are in the same availability zone.

When you launch an instance without specifying an availability zone, Amazon picks one for
you. In general, when launching your first instance, you want Amazon to make the selection
for you because it will pick the availability zone with the greatest resource availability. As
you add instances into your infrastructure, you will want to specify the target availability
zone to maximize redundancy where this is critical and minimize bandwidth charges where
redundancy is not critical.

Static IP Addresses

Every time you launch a new instance in EC2, Amazon dynamically assigns it both public and
private IP addresses. Later in this book, I will introduce techniques to minimize the need for
static IP addresses, but the need can never be eliminated. For example, you almost certainly
need a website to have a fixed IP address mapped by your DNS server. Amazon supports this
need through elastic IP addresses.

A M A Z O N C L O U D C O M P U T I N G 39

Download at WoweBook.Com

A new Amazon account comes with the ability to create five elastic (static) IP addresses. You
are not charged for these IP addresses until you actually create them. Even then, you are
charged only for creating them without assigning them to a running EC2 instance, or for
repeatedly reassigning them. Elastic IP addresses are one of the few things in life you get
charged for when you do not use them.

N O T E
Be a good Internet citizen. Though the charges for IP addresses won’t break your bank

account, you should allocate an IP address only when you know you are going to need it.

The Internet is running out of IP addresses, and the global problem is intensified at the local

level because each organization is allocated a fixed number of IP addresses. So, every time

people allocate IP addresses that aren’t associated with an active instance, it strains the

system. Don’t say that IPv6 will fix the problem unless you are willing to invest a huge

amount of time learning a whole new paradigm, reinstalling new versions of software, and

configuring servers from scratch. Amazon, however, does not currently support external

routing of IPv6 addresses.

To allocate new elastic IP address:

$ ec2-allocate-address
ADDRESS 67.202.55.255

That IP address is now “yours” to assign to an EC2 instance:

$ ec2-associate-address -i i-a7d32cc3 67.202.55.255
ADDRESS 67.202.55.255 i-a7d32cc3

Finally, you can list all of your allocated addresses:

$ ec2-describe-addresses
ADDRESS 67.202.55.255 i-a7d32cc3
ADDRESS 75.101.133.255 i-ba844bc3

When you assign an elastic IP address to an instance, the old public address goes away and is
replaced by your assigned elastic IP address. If that instance is lost for any reason, you can bring
up a new instance and assign the old instance’s elastic IP address to it. As a result, you retain
public access to your system via a single, static IP address.

The private IP address for an instance always remains the dynamic address assigned to it at
launch.

Data Storage in EC2

Amazon provides three very different kinds of storage in its cloud infrastructure:

• Persistent cloud storage

• Ephemeral instance storage

40 C H A P T E R T W O

Download at WoweBook.Com

• Elastic block storage

Amazon S3 is the mechanism through which Amazon offers persistent cloud storage.

When you launch a new EC2 instance, it comes with ephemeral instance storage whose
lifespan matches the instance it supports. In other words, if you lose the instance or terminate
it, you lose everything that was in its ephemeral storage.

The final kind of storage is elastic block storage (EBS). EBS is basically a network-based block
storage device, similar to a SAN in a physical infrastructure. You may create volumes varying
in size from 1 GB to 1 TB and mount any number of volumes from a single Amazon EC2
instance. You may not, however, share a volume directly between two EC2 instances.

Your gut reaction is almost certainly, “I want door number 3! I want that block storage thing!”
Yes, block storage is definitely a good thing. In a well-crafted cloud infrastructure, however,
you will make intelligent use of all three kinds of storage, using each where it is best suited
to your various storage requirements. Table 2-1 compares the various storage options for data
in your EC2 instance.

TABLE 2-1. Comparison of EC2 data storage options

 Amazon S3 Instance Block storage

Speed Low Unpredictable High

Reliability Medium High High

Durability Super high Super low High

Flexibility Low Medium High

Complexity High Low High

Cost Medium Low High

Strength DR management Transient data Operational data

Weakness Operational data Nontransient data Lots of small I/O

THE RELIABILITY AND DURABILITY OF S3
S3 has medium reliability but super-high durability because it is simultaneously the most durable
of the options but the least reliable. When you put data in S3, you know it will be there tomorrow
and the day after and the day after that. No data loss, no corruption. It does not really matter what
happens. The problem is that S3 has a pretty weak track record in terms of availability. In the past
year, I have seen one entire day without any access to S3 and a number of multihour outages. To my
knowledge, however, S3 has never lost any data, and its overall architecture makes it unlikely to lose
data. The irony is that, until recently, S3 was the only cloud infrastructure service that Amazon offered
with a guaranteed service level.

A M A Z O N C L O U D C O M P U T I N G 41

Download at WoweBook.Com

Another issue is the unpredictability of performance in the instance storage. You might actually
think that it should be faster than the other options, and sometimes it is. Sometimes, however, it is
unbelievably slow—slower than an NFS mount over a 10bT Ethernet connection. EBS, on the other
hand, consistently gives you the performance of a SAN over a GB Ethernet connection.

EBS volume setup

To get started with elastic block storage, create an EBS volume:

ec2-create-volume --size SIZE_GB -z ZONE

This command creates a block volume of the specified size in the specified availability zone.

One key requirement of a block storage volume is that it must be in the same availability zone
as your EC2 instance—you cannot mount volumes across availability zones. Therefore, you
will always specify the target availability zone when creating the block volume:

$ ec2-create-volume --size 10 -z us-east-1a
VOLUME vol-9a773124 800 creating 2008-10-20T18:21:03+0000

You must wait for the volume to become available before you can assign it to an EC2 instance.
Check its availability with ec2-describe-volumes:

$ ec2-describe-volumes vol-9a773124
VOLUME vol-9a773124 800 available 2008-10-20T18:21:03+0000

At that point, Amazon starts charging you for the volume, but it is not in use by any instance.
To allow an instance to use it, you must attach it to a specific instance in the same availability
zone:

$ ec2-attach-volume vol-9a773124 -i i-a7d32cc3 -d /dev/sdh
ATTACHMENT vol-9a773124 i-a7d32cc3 /dev/sdh attaching 2008-10-20T18:23:27+0000

This command tells EC2 to attach your newly created volume to the specified instance and
assign the device /dev/sdh to the volume (the device name I chose reflects the Unix/Linux
device layout, and sdh is a common name for a SCSI device on Linux). If the instance lies in
a different availability zone or is in use by another instance, you will receive an error message.
Otherwise, at this point you have a raw device attached to your instance that you can mount
and format in whatever manner you choose.

The most common thing a Linux system does to make a volume usable is format the new
volume as an ext3 drive (I prefer XFS because you can freeze the filesystem) and then mount
it. To perform these basic tasks, SSH into your instance and execute the following commands:

$ mkdir /mnt/myvolume
$ yes | mkfs -t ext3 /dev/sdh
$ mount /dev/sdh /mnt/myvolume

42 C H A P T E R T W O

Download at WoweBook.Com

You now have a 10 GB volume ready for use by the instance in question. You can use it in any
way you would use an ext3 volume.

Volume management

As with any other kind of device, an EBS volume has the potential to become corrupted if not
properly disconnected.

W A R N I N G
You should always, always, always unmount an EBS volume before detaching it. If you are

running a database engine on that volume, always, always, always shut down the database

before unmounting the volume.

As part of your system shutdown process, your instance should be cleanly unmounting
volumes. If, however, you intend to detach a volume outside the normal shutdown process,
you should first manually unmount it (and it wouldn’t hurt to sync it, too):

$ umount /mnt/myvolume

At that point, it is safe to detach the instance so that it can be available to a different instance:

$ ec2-detach-volume vol-9a773124 -i i-a7d32cc3
ATTACHMENT vol-9a773124 i-a7d32cc3 /dev/sdh detaching 2008-10-20T18:55:17+0000

You can now attach the volume to another instance.

Snapshots

The ability to take a snapshot of a volume is a particularly fine feature of Amazon’s elastic block
storage. You can make a snapshot of your volume as often as you like. EC2 automatically saves
the snapshot to S3, thus enabling a quick, powerful backup scheme.

W A R N I N G
Although EBS snapshots are a particularly powerful backup mechanism, keep in mind that

they are entirely unportable. You cannot take your EBS snapshots out of the Amazon cloud.

Even if you could, you wouldn’t be able to make use of them. In Chapter 6, I cover approaches

to taking advantage of EBS snapshotting while developing a portable backup strategy.

Create a snapshot using the ec2-create-snapshot command. Before you create a snapshot,
however, you will want to make sure the volume you are snapshotting is in a consistent state.
In other words, you likely need to stop any write operations on the volume. How you do this
depends on the applications writing to the volume.

A M A Z O N C L O U D C O M P U T I N G 43

Download at WoweBook.Com

The biggest concern with filesystem consistency will be any databases stored on the volume.
It is absolutely critical that you stop all database write operations before you take your
snapshot.

HOW TO LOCK MYSQL FOR A SNAPSHOT
With MySQL, for example, you can either put a lock on the entire engine or put the database in read-
only mode. The safest thing is to get a lock on the engine. From the MySQL command-line utility, you
can execute the following command:

FLUSH TABLES WITH READ LOCK

Leave the command line open, lock your filesystem, and create the snapshot. The best filesystem
for use with EBS on Linux is XFS, thanks to the xfs_ freeze command.

Once the snapshot is created, you can close the client, releasing the lock. You need to wait only for
the ec2-create-snapshot command to return—you do not need to wait for the snapshot to become
completed.

Just about any database that supports warm backups will adapt well to the EBS snapshot strategy.

To create a snapshot:

$ ec2-create-snapshot vol-9a773124
SNAPSHOT snap-21ab4c89b vol-9a773124 pending 2008-10-20T19:02:18+0000

Once you create a snapshot, you can immediately begin writing to the volume again; you do
not need to wait for the snapshot to complete before resuming writes. The full snapshot process
will take time to complete in the background, so the snapshot is not immediately available for
use. You can use the ec2-describe-snapshots command to identify when the snapshot is ready
for use:

$ ec2-describe-snapshots snap-21ab4c89b
SNAPSHOT snap-21ab4c89b vol-9a773124 pending 2008-10-20T19:02:33+0000 20%

When done, the status field will change from pending to completed and show the amount
completed as 100%.

The snapshot is not a usable volume itself, but when you need access to the data on it, you can
create volumes from it:

$ ec2-create-volume --snapshot snap-21ab4c89b -z us-east-1a
VOLUME vol-13b692332a 800 creating 2008-02-15T19:11:36+0000

44 C H A P T E R T W O

Download at WoweBook.Com

You then have a preformatted volume with all of the data from the old volume ready for use
by a new EC2 instance. You can create any number of volumes based on the same snapshot.

This snapshot feature enables you to do a number of powerful things:

• Rapidly create duplicate environments for system testing, load testing, or other purposes
that require an exact duplication of production

• Keep running backups that have a minimal impact on your production environment

Another feature of these snapshots is that they are incremental. In other words, if you make
one snapshot of a 20 GB volume at 18:00 and another at 18:10, you end up storing in S3 only
the original 20 GB plus whatever changed between 18:00 and 18:10. These incremental
snapshots thus make it possible to constantly back up your volumes.

AMI Management

When you get started, you will leverage preexisting generic AMIs to bootstrap your efforts.
Before you get anywhere near production, however, you will need to build and manage your
own library of machine images. Later chapters will discuss in detail strategies for managing
machine images, whether for Amazon or another cloud. But to end this chapter, I’ll explain
the basic procedure you’ll need to know to create and register a machine image.

An Amazon machine image contains the root filesystem for your instance. It does not contain
anything in your ephemeral storage (files under /mnt in most setups). To build an AMI,
you will need a copy of your Amazon EC2 certificate and private key (the two files ending
in .pem that you got when setting up your Amazon account). Place those files in /mnt, because
you do not want your Amazon keys embedded in your AMI. You should probably also clean
up /tmp and /var/tmp so that you are not wasting a bunch of space in S3 on temporary files.
Finally, if you are running a database instance on the instance’s root partition, stop the
database.

Your first task is to bundle up your image:

$ cd /mnt
$ sudo mkdir ami
$ sudo ec2-bundle-vol -d /mnt/ami -k /mnt/pk-ZZZ.pem \
 -c /mnt/cert-ZZZ.pem -u 1234567890123 -r i386 -p myami

This process will take a long time, and appear to be doing nothing for a while. The command
bundles up your root filesystem, breaks it into small parts, and stores it under /mnt/ami/myami.

Once the process has completed, you will end up with dozens of parts to your AMI, as well as
a manifest file called /mnt/ami/myami/myami.manifest.xml.

At this point, you need to upload the AMI bundle to Amazon S3:

$ s3cmd mb s3://myami
$ sudo ec2-upload-bundle -b myami -m /mnt/ami/myami.manifest.xml \
 -a ACCESS_KEY -s SECRET_KEY

A M A Z O N C L O U D C O M P U T I N G 45

Download at WoweBook.Com

N O T E
The access key and secret key used to upload your bundle are your S3 access and secret keys,

not the EC2 certificates used in creating the bundle.

This command will take some time as it uploads all of the parts into S3. In my experience, this
command has a very high likelihood of failure as it is executing a number of S3 PUT commands.
If it fails, just try again. Eventually it will succeed.

There’s one final step before you can leverage the image: registering the AMI with EC2. To
register an AMI:

$ ec2-register myami/myami.manifest.xml
IMAGE ami-33a2d51c

When launching new instances, you can use this AMI ID to make them launch from your
new instance.

46 C H A P T E R T W O

Download at WoweBook.Com

C H A P T E R T H R E E

Before the Move into the Cloud

MOST READERS OF THIS BOOK HAVE BUILT WEB APPLICATIONS deployed in traditional data
centers. Now that we have developed a common understanding of what the cloud is and how
Amazon implements cloud computing, it’s time to look at the concerns you may have when
moving into the cloud.

This chapter covers a broad range of these considerations, and I will only touch lightly on
approaches to dealing with them at this point. Each of the chapters that follow dives in deeper
to solving some of the challenges raised in this chapter.

Know Your Software Licenses
When I cover the issues people face when moving into the cloud, I always start with licensing
because it’s a nontechnical problem that is too easy to overlook. Just because you have licensing
that works for you in a traditional data center does not mean you can port those licenses into
the cloud.

With many cloud environments in operation today, you pay for resources by the CPU-hour.
The cheapest virtual machine in the Amazon Cloud, for example, costs $0.10 for each hour
you leave the instance in operation. If it is up for 10 hours and then shut down, you pay just
$1.00—even if that is the only use you make of the Amazon cloud for that month.

47

Download at WoweBook.Com

In a real world, you might have the following operating scenario:

• From midnight to 9 a.m., run your application on two application servers for redundancy’s
sake.

• From 9 a.m. to 5 p.m., launch six additional application servers to support business-hour
demand.

• For the evening hours through midnight, reduce the system down to four application
servers.

Adding all that up, you pay for 110 hours of computing time. If you were using physical servers,
you would have to purchase and run eight servers the entire time.

Unfortunately, not all software vendors offer licensing terms that match how you pay for the
cloud. Traditional software licenses are often based on the number of CPUs. An organization
that uses 10 application servers must pay for 10 application server licenses—even if 5 of them
are shut down during the late night hours.

So, when moving to the cloud, you must understand your licensing terms and, in particular:

• Does the software license support usage-based costs (CPU-hour, user, etc.)?

• Does the software allow operation in virtualized environments?

Because the cloud makes it so easy to launch new instances, you can readily find yourself in
a situation in which a lower-level staff member has launched instances of software for which
you don’t have the proper licensing and, as a result, has violated your license agreements.

The ideal cloud-licensing model is open source. In fact, the flexibility of open source licensing
has made the Amazon cloud possible. If you can remove licensing concerns altogether from
your cloud deployments, you are free to focus on the other challenges of moving to the cloud.
Although some open source solutions (such as Apache and most Linux distributions) let you
do whatever you want, you may have to deal with licenses if you get supported versions of
open source software, such as Red Hat Enterprise Linux or MySQL Enterprise. Luckily, these
licensed offerings tend to be cloud-friendly.

Beyond pure open source, the best licensing model for the cloud is one that charges by the
CPU-hour. As the cloud catches on, more and more software vendors are offering terms that
support hourly license charges. Microsoft, Valtira, Red Hat, Vertica, Sun, and many other
companies have adopted per-CPU-hour terms to support cloud computing. Oracle promotes
their availability in the cloud but unfortunately retains traditional licensing terms.

Software that offers per-user licensing can work adequately in the cloud as well. The challenge
with such software is often how it audits your licensing. You may run the risk of violating your
terms, the license may be tied to a specific MAC or IP address, or the software license
management system may not be smart enough to support a cloud environment and
unreasonably prevent you from scaling it in the cloud.

48 C H A P T E R T H R E E

Download at WoweBook.Com

The worst-case scenario* in the cloud is software that offers per-CPU licensing terms. As with
some per-user systems, such software may come with license management tools that make life
difficult. For example, you may have to create a custom install for each instance of the software.
Doing that impairs the flexibility that the cloud offers.

Some CPU-based software licenses require validation against a licensing server. Any software
with this requirement may ultimately be inoperable in the cloud if it is not smart enough to
recognize replacement virtual servers on the fly. Even if it can recognize replacements, you’ll
have to make sure that the license server allows you to start the number of servers you need.

Unless a license server is going to be an impediment, however, the result is no worse than a
physical infrastructure. If all of your software fits into this model, the benefits of the cloud may
be small to nonexistent.

The Shift to a Cloud Cost Model
As I noted at the start of this chapter, you pay for resources in the cloud as you use them. For
Amazon, that model is by the CPU-hour. For other clouds, such as GoGrid, it’s by the RAM
hour. Let’s look at how you can anticipate costs using the example resource demands described
earlier (two application servers from midnight until 9 a.m., eight from 9 a.m. until 5 p.m., and
four from 5 p.m. until midnight).

Suppose your core infrastructure is:

$0.10/CPU-hour: one load balancer
$0.40/CPU-hour: two application servers
$0.80/CPU-hour: two database servers

Each day you would pay:

$2.40 + $44.00 + $38.40 = $84.80

Your annual hosting costs would come to $30,952.00—not including software licensing fees,
cloud infrastructure management tools, or labor.

How to Approach Cost Comparisons

The best way to compare costs in the cloud to other models is to determine the total cost of
ownership over the course of your hardware depreciation period. Depending on the
organization, a hardware depreciation period is generally two or three years. To get an accurate
picture of your total cost of ownership for a cloud environment, you must consider the
following cost elements:

* Well, maybe not the worst-case scenario. The worst-case scenario is software that specifically prohibits
its use in the cloud or in a virtualized environment.

B E F O R E T H E M O V E I N T O T H E C L O U D 49

Download at WoweBook.Com

• Estimated costs of virtual server usage over three years.

• Estimated licensing fees to support virtual server usage over three years.

• Estimated costs for cloud infrastructure management tools, if any, over three years.

• Estimated labor costs for creating machine images, managing the infrastructure, and
responding to issues over three years.

• Any third-party setup costs for the environment.

If you want a truly accurate assessment of the three-year cost, you will need to take into
account when the costs are incurred during the three-year period and adjust using your
organization’s cost of capital. This financial mumbo jumbo is necessary only if you are
comparing cloud costs against a substantial up-front investment in a purchased infrastructure,
but if you understand it, it’s still a good idea.

SUNK COSTS AND EXISTING INFRASTRUCTURE
To follow up on the discussion in Chapter 1, in the sidebar “Urquhart on Barriers to
Exit” on page 16, this cost analysis ignores any sunk costs. If you can leverage existing infrastructure
without incurring any additional costs for leveraging that infrastructure, you should treat that as a
$0 cost item. If you have servers sitting around and IT resources with excess availability, you may
find that your existing infrastructure is going to have a lower total cost. When making that
consideration, however, you should also consider whether delaying your entry into the cloud will
have any long-term costs to the organization that offset the savings of leveraging existing
infrastructure.

In comparison, you must examine the following elements of your alternatives:

• What are your up-front costs (setup fees, physical space investment, hardware purchases,
license fee purchases)?

• What labor is required to set up the infrastructure?

• What are the costs associated with running the infrastructure (hosting space, electricity,
insurance)?

• What are the labor costs associated with supporting the hardware and network
infrastructure?

• What are the ongoing license subscription/upgrade fees? Maintenance fees?

In Chapter 1, I provided an example comparison for a simple transactional application
infrastructure in an internal IT environment against a managed services environment and a
cloud environment. Although that example provides a good view of how the cloud can be
beneficial, it is absolutely critical you perform a cost analysis using your own real usage

50 C H A P T E R T H R E E

Download at WoweBook.Com

numbers. In doing such a comparison, you should make sure that your estimated cloud
infrastructure properly supports your operating requirements, that your estimated internal IT
costs take into account concerns such as physical space costs and electricity usage, and that
your managed services estimates include costs not generally supported by your managed
services agreement.

A Sample Cloud ROI Analysis

In Chapter 1, I broke down the costs of a highly theoretical infrastructure without much
explanation of their source. Given what we have discussed here, let’s perform an ROI analysis
of a specific infrastructure that compares building it internally to launching it in the cloud.

N O T E
Please don’t get caught up in the specific costs and purchase options in this analysis. The

purpose is not to provide a definitive ROI analysis for the cloud versus internal data center,

but instead to outline how to look at the things you must consider when setting up such an

analysis. Your analysis should include the purchase decisions you would make in building

an infrastructure and the costs of those decisions to your business.

This particular example assumes that two application servers easily support standard demand.
It also assumes, however, that the business has a peak period of traffic on the 15th day of each
month that lasts for 24 hours. Serving this peak capacity at the same performance levels as
standard capacity requires an extra four servers. This system can still function at peak capacity
with only two extra servers—but at the expense of degraded performance.

If you’re starting from scratch, you will minimally need the following equipment for your IT
shop:

• Half rack at a reliable ISP with sufficient bandwidth to support your needs

• Two good firewalls

• One hardware load balancer

• Two good GB Ethernet switches

• Six solid, commodity business servers (we will accept degraded performance on the 15th
day)

For the cloud option, you will need just a few virtual instances:

• One medium 32-bit instance

• Four large 64-bit instances during standard usage, scaled to meet peak demand at 8

In addition, you need software and services. Assuming an entirely open source environment,
your software and services costs will consist of time to set up the environments, monitoring

B E F O R E T H E M O V E I N T O T H E C L O U D 51

Download at WoweBook.Com

services, support contracts, and labor for managing the environment. Table 3-1 lays out all of
the expected up-front and ongoing costs.

TABLE 3-1. Costs associated with different infrastructures

 Internal (initial) Cloud (initial) Internal (monthly) Cloud (monthly)

Rack $3,000 $0 $500 $0

Switches $2,000 $0 $0 $0

Load balancer $20,000 $0 $0 $73

Servers $24,000 $0 $0 $1,206

Firewalls $3,000 $0 $0 $0

24/7 support $0 $0 $0 $400

Management software $0 $0 $100 $730

Expected labor $1,200 $1,200 $1,200 $600

Degraded performancea $0 $0 $100 $0

Totals $53,200 $1,200 $1,900 $3,009

a Remember, we have opted to buy only four application servers in the internal infrastructure instead of six. That degraded
performance has some cost to the business. This cost is typically lost business or a delay in receiving cash. I picked $100 out of
the air here because anything more than about $110 would justify the addition of new servers into the mix and anything less would
raise the question of why you would bother building out support for peak capacity at all.

To complete the analysis, you need to understand your organization’s depreciation schedule
and cost of capital. For hardware, the depreciation schedule is typically two or three years. For
the purposes of this example, I will use the more conservative three-year schedule. This
schedule essentially defines the expected lifetime of the hardware and frames how you
combine monthly costs with one-time costs.

The cost of capital for most organizations lies in the 10% to 20% range. In theory, the cost of
capital represents what your money is worth to you if you were to invest it somewhere else.
For example, if you have $10,000, a 10% cost of capital essentially says that you know you
can grow that $10,000 to $11,046.69 (with the cost of capital being compounded monthly)
after a year through one or more standard investment mechanisms. Another way to look at it
is that gaining access to $10,000 in capital will cost you $11,046.69 after a year. Either way,
the cost of $10,000 to your business is 10%, calculated monthly.

Ignoring the cost of capital, the internal build-out costs you $121,600 and the cloud costs you
$109,254. These numbers result from adding the up-front costs together with the monthly
costs after the depreciation period—in this case, three years. In this example, it is obvious that
the cloud comes out better, even when we ignore the cost of capital. The cost of capital will
always be higher for the option that requires more money earlier. As a result, even if the two

52 C H A P T E R T H R E E

Download at WoweBook.Com

numbers had come out even at $100,000, we would know from the schedule for acquiring
capital that the cloud would be the more financially attractive option.

If you want to compare scenarios in which the cloud looks slightly more expensive, or if you
want to know the level of business you must generate to justify your infrastructure, you must
take into account the cost of capital so you can understand each option’s true cost to the
business. The financial expression is that you want to know the present value (the value of
those payments to you today if you were forced to pay for it all today) of all of your cash
outflows over the course of the depreciation period.

Learning how to calculate present value is a full chapter in most financial textbooks and thus
beyond the scope of a book on cloud computing. Fortunately, Microsoft Excel, Apple Numbers,
your financial calculator, and just about any other program on earth with financial functions
will take care of the problem for you.

For each option, calculate the present value of your monthly payments and add in any up-
front costs:

Internal: = (–PV(10%/12,36,1900,0)) + 53200 = $112,083.34
Cloud: = (–PV(10%/12,36,3900,0)) + 1200 = $94,452.63

Not only is the cloud cheaper, but the payment structure of the cloud versus up-front
investment saves you several thousand dollars.

The final point to note is that you can use the $112,083.34 and $94,452.63 numbers to help
you understand how much money these systems need to generate over three years in order
to be profitable (make sure that calculation is also using today’s dollars).

Where the Cloud Saves Money

As you engage in your cost analysis, you will find merely moderate savings if your application
has a fairly static demand pattern. In other words, if you always have the same steady amount
of usage, you won’t see most of the key cost benefits of being in the cloud. You should see
some savings over hosting things in your own infrastructure due to the reduced labor
requirements of the cloud, but you might even pay more than some managed services
environments—especially if you have true high-availability requirements.

Cost savings in the cloud become significant, and even reach absurd levels, as your variance
increases between peak and average capacity and between average and low capacity. My
company has an extreme example of a customer that has very few unique visitors each day
for most of the year. For about 15 minutes each quarter, however, they have the equivalent
of nearly 10 million unique visitors each month hitting the website. Obviously, purchasing
hardware to support their peak usage (in other words, for 1 hour per year) would be insanely
wasteful. Nevertheless, they don’t have the option of operating at a degraded level for that one
hour each year. The cloud is the perfect solution for them, as they can operate with a very

B E F O R E T H E M O V E I N T O T H E C L O U D 53

Download at WoweBook.Com

baseline infrastructure for most of the year and scale up for a few minutes each quarter to
support their peak demand.

A common and relatively straightforward set of cost savings lies in the management of
nonproduction environments—staging, testing, development, etc. An organization generally
requires these environments to be up at certain points in the application development cycle
and then torn down again. Furthermore, testing requirements may demand a full duplication
of the production environment. In the cloud, you can replicate your entire production
infrastructure for a few days of testing and then turn it off.

Service Levels for Cloud Applications
When a company offers a service—whether in the cloud or in a traditional data center—that
company generally provides its customers with a service level agreement (SLA) that identifies
key metrics (service levels) that the customer can reasonably expect from the service. The
ability to understand and to fully trust the availability, reliability, and performance of the cloud
is the key conceptual block for many technologists interested in moving into the cloud.

Availability

Availability describes how often a service can be used over a defined period of time. For
example, if a website is accessible to the general public for 710 hours out of a 720-hour month,
we say it has a 98.6% availability rating for that month.

Although 98.6% may sound good, an acceptable value depends heavily on the application
being measured—or even what features of the application are available. If, for example,
Google’s spider is down for 24 hours but you can still search and get results, would you consider
Google to be down?

Most people consider a system to have high availability if it has a documented expectation of
99.99% to 99.999% availability. At 99.999% availability, the system can be inaccessible for at
most five minutes and 15 seconds over the course of an entire year.

LUCK IS NOT HIGH AVAILABILITY
Referring to a system as a high-availability system describes what you can expect in terms of future
uptime—not what you happened to get one year when you were lucky. The fact that your personal
website hosted on an old 486 in your basement has managed to stay up all year does not suddenly
make it a high-availability system. If that 486 has roughly a 40% shot of going down within a calendar
year, it is completely unreasonable for you to claim it as a high-availability environment, regardless
of its past performance.

54 C H A P T E R T H R E E

Download at WoweBook.Com

How to estimate the availability of your system

Most service outages are the result of misbehaving equipment. These outages can be prolonged
by misdiagnosis of the problem and other mistakes in responding to the outage in question.
Determining expected availability thus involves two variables:

• The likelihood you will encounter a failure in the system during the measurement period.

• How much downtime you would expect in the event the system fails.

The mathematic formulation of the availability of a component is:

a = (p –(c×d))/p

where:

a = expected availability
c = the % of likelihood that you will encounter a server loss in a given period
d = expected downtime from the loss of the server
p = the measurement period

So, if your 486 has a 40% chance of failure and you will be down for 24 hours, your 486 uptime
is (8760 − (40%×24))/8760, or just shy of 99.9%.

99.9% availability sounds pretty great for an old 486, right? Well, I certainly oversimplified
the situation. Do you honestly expect your DSL or cable never to go down? And do you think
you can go get a replacement server, configure it, and execute a recovery from backup within
24 hours? What about your networking equipment? How reliable are your backups?

To achieve an accurate availability rating, you need to rate all of the points of failure of the
system and add them together. The availability of a system is the total time of a period minus
the sum of all expected downtime during that period, all divided by the total time in the period:

a = (p – SUM(c1×d1:cn×dn))/p

If your cable provider generally experiences two outages each year lasting two hours each, the
Internet connection’s availability is:

(8760 – (200%×2))/8760 = 99.95%

Thus, your overall availability is:

(8760 − ((40%×24) + (200%×2)))/8760 = 99.84%

This example illustrates the ugly truth about software systems: the more points of failure in
the system, the lower its availability rating will be. Furthermore, the amount of time you are
down when you go down has a much more profound impact than how often you might go
down.

Redundancy mitigates this problem. When you have two or more physical components
representing a logical component, the expected downtime of the logical component is the
expected amount of time you would expect all of the physical components to be down

B E F O R E T H E M O V E I N T O T H E C L O U D 55

Download at WoweBook.Com

simultaneously. In other words, the c×d formula for downtime calculation becomes slightly
more complex:

(c×dn)/(p(n–1))

where n is the level of redundancy in the system. As a result, when n = 1, the formula reduces
as you would expect to its simpler form:

(c×dn)/(p(n–1)) = (c×d)/(p0) = c×d

The redundancy of two 486 boxes—and this requires seamless failover to be considered one
logical component—now provides a much better availability rating:

(8760 – ((40%×(242))/(8760(2–1)))/8760 = 99.999%

What constitutes availability?

At some level, high availability lies in the eye of the beholder. If availability is a requirement
for your system, you need to define not simply the percentage of time it will be available, but
what it means to be available. In particular, you need to define the following availability
criteria:

• What features must be accessible in order for the system to qualify as available? In the
Google example earlier, we would consider Google to be available as long as you can search
the site and get results; what the spider is doing is irrelevant.

• Should you include planned downtime? Including planned downtime is somewhat
controversial, but you may want to do it for some types of availability measurement and
not for others. For example, if your architecture is fully capable of supporting 99.999%
availability but you prefer to take the environment down 1 hour each week for system
maintenance (due to overzealous security procedures or whatever criterion not related to
the theoretical availability of the architecture itself), you could advertise the environment
as having 99.999% availability. If, however, you are trying to communicate to end users
what they should expect in the way of uptime, saying such an environment has 99.999%
availability is misleading.

• What percentage of the time will your environment remain available?

A website, for example, might state its availability requirements as the home page and all child
pages will be accessible from outside the corporate network between the hours of 7 a.m. and
9 p.m. 99.999% of the time.

Cloud service availability

As we put together an architecture for deploying web applications in the cloud, we need to
understand what we can expect from the cloud. Although the same high-availability concepts
apply in the cloud as in a traditional data center, what you might consider a reliable component
differs dramatically between the two paradigms.

56 C H A P T E R T H R E E

Download at WoweBook.Com

Perhaps the most jarring idea is that many failures you might consider rare in a traditional data
center are common in the cloud. This apparent lack of reliability is balanced by the fact that
many of the failures you might consider catastrophic are mundane in the cloud.

For example, an EC2 instance is utterly unreliable when compared to the expected availability
of a low-end server with component redundancies. It is very rare to lose such a physical server
with no warning at all. Instead, one component will typically fail (or even warn you that it is
about to fail) and is replaced by a redundant component that enables you to recover without
any downtime. In many other clouds, such as Rackspace and GoGrid, you see the same levels
of reliability. In the Amazon cloud, however, your instances will eventually fail without
warning. It is a 100% guaranteed certainty.

Furthermore, a failure of a virtual instance is the physical equivalent to a grenade going off in
your server with no collateral damage. In other words, the server is completely lost. You won’t
recover anything

Am I scaring you? This distinction is one of the first stumbling blocks that makes technologists
nervous about the cloud. It’s scary because in the physical world, the loss of a server is a minor
catastrophe. In the virtual world, it’s almost a nonevent. In fact, in the cloud, you can lose an
entire availability zone and shrug the incident off. In contrast, what would happen to your
systems if your entire data center were to suddenly disappear?

In Chapters 4 and 6, I discuss techniques that will not only alleviate any fears I might have
created just now, but also will enable you to feel more confident about your cloud environment
than you would feel about a physical environment.

Amazon Web Services service levels

One way in which competitors have elected to compete against Amazon is in the area of service
levels. Most competitors offer strong service levels in the cloud. Although Amazon has provided
its customers with an SLA for S3 for some time, it has only recently added a formal SLA to
EC2. The S3 service level promises that S3 will respond to service requests 99.5% of the time
in each calendar month. EC2, on the other hand, defines a more complex availability service
level. In particular, EC2 promises 99.95% availability of at least two availability zones within
a region.

These service levels don’t immediately translate into something you can promise your own
customers when deploying in the cloud. In particular:

• You need S3 to be available to launch an EC2 instance. If S3 has a 99.5% availability, you
will be able to launch new EC2 instances only 99.5% of the time, regardless of how well
EC2 is living up to—or exceeding—its promises. This drawback also applies to snapshots
and creating volumes because you cannot take a snapshot or create a volume from a
snapshot if S3 is down.

B E F O R E T H E M O V E I N T O T H E C L O U D 57

Download at WoweBook.Com

• EC2 is living up to its service level as long as two availability zones in the same region are
available 99.95% of the time. EC2 can technically live up to this service level with entire
availability zones constantly going down.

• You need to architect your application to be able to reliably support the demands on it.

CAN YOU TRUST IT?
It’s one thing for Amazon to promise a certain level of availability; what matters is that they live up
to that promise.

It is critical here to distinguish between EC2 and S3. EC2 is based on a known technology (Xen) with
customizations solving a well-understood problem: virtualization. S3, on the other hand, is a largely
homegrown system doing something fairly unique. In my experience, problems with EC2 have been
related to fairly mundane data center issues, whereas problems with S3 have involved the more
esoteric elements of their proprietary cloud storage software.

Boiling it down to the essence, EC2 is better understood than S3. Amazon is thus more likely to be
“right” about its promises relating to EC2 than it is with respect to S3. Reality has borne out this
analysis: S3 has had significant outages† in the past year and thus failed to live up to the 99.5%
availability on occasion. During the same period, I am not aware of EC2 having any trouble living up
to 99.95% availability, even though EC2 did not yet have the SLA in place and was labeled a “beta”
service.

The key takeaway? You need to build an application infrastructure that does not operationally rely
on S3 to meet its availability objectives. I’ll help you do that as this book progresses.

Expected availability in the cloud

The key differentiator between downtime in the cloud and downtime in a physical
environment lies in how much easier it is to create an infrastructure that will recover rapidly
when something negative happens. In other words, even though a physical server is more
reliable than a virtual server in the cloud, the cloud enables you to inexpensively create
redundancies that span data centers and more quickly recover when a downtime occurs.

Let’s compare a very simple setup that includes a single load balancer, two application servers,
and a database engine.

† I don’t mean to overplay these outages. In my experience, Amazon’s communications and
transparency during outages have been outstanding, and they are very obviously working hard to
improve the reliability for an area in which they are blazing the trail. By the time you read this book,
it is very possible that these outages will be quaint relics of Amazon’s early growing pains.

58 C H A P T E R T H R E E

Download at WoweBook.Com

When implementing this architecture in a physical data center, you will typically locate this
infrastructure in a single rack at a hosting provider using fairly mundane servers with
component redundancy and hardware load balancing. Ignoring network failure rates and the
possibility of a data center catastrophe, you will probably achieve availability that looks like
these calculations:

Load balancer
99.999% (people use hardware load balancers partly to minimize component failure)

Application server
(8760 − ((30%×(242))/8760))/8760 = 99.999%

Database server
(8760 − (24×30%))/8760 = 99.92%

Overall system
(8760 − ((24×30%) + (24×(((30%×(242))/8760)) + (24×30%)))/8760 = 99.84%

For the purposes of this calculation, I assumed that the load balancer is virtually assured of
never going down during the course of its depreciation period, that the servers are guaranteed
to eventually go down, and that the loss of any of the components will cause 24 hours of
downtime.

The best way to improve on this infrastructure cheaply is to have spare parts lying around.
By cutting down on the downtime associated with the loss of any given component, you
dramatically increase your availability rating. In fact, if you are using a managed services
provider, they will generally have extra components and extra servers available that will cut
your downtime to the amount of time it takes to swap in the replacement and configure it. On
the other hand, if you are managing your servers yourself and you don’t have a 24-hour
turnaround guarantee from your hardware vendor, your environment may have a truly
miserable availability rating.

WHAT DO THESE NUMBERS REALLY MEAN?
Reasonable people can—and will—disagree with the numbers I have used in this section in both
directions. The purpose of these calculations is not to make the claim that a traditional data center
has a 99.84% availability for this architecture and the cloud has a 99.994% availability. If you read
this section that way and quote me on it, I will be very unhappy!

What you should see in these calculations is a process for thinking about availability, and an
understanding of how stability in the cloud differs from stability in a physical infrastructure:

• EC2 instances are much less stable than physical servers.

• The reliance on multiple availability zones can significantly mitigate the lack of stability in EC2
instances.

B E F O R E T H E M O V E I N T O T H E C L O U D 59

Download at WoweBook.Com

• The lack of stability of a software load balancer is largely irrelevant thanks to the ability to
quickly and automatically replace it.

In the cloud, the calculation is quite different. The load balancer is simply an individual
instance, and individual server instances are much less reliable. On the other hand, the ability
to span availability zones increases clustering availability. Furthermore, the downtime for these
nodes is much less:‡

Load balancer
(8760 − (.17×80%))/8760 = 99.998%

Application server
(8760 − (17%×((.172)/8760)))/8760 = 99.9999%

Database server
(8760 − (.5×80%))/8760 = 99.995%

Overall system
(8760 − ((.17×80%) + (17%×((.172)/8760)) + (.5×80%)))/8760 = 99.994%

This calculation assumes you are using tools to perform automated recovery of your cloud
infrastructure. If you are doing everything manually, you must take into account the increased
downtimes associated with manual cloud management. Finally, I ignored the impact of S3’s
lack of reliability. In reality, there is a small chance that when you need to launch a replacement
instance (which keeps your downtime to a minimum), you will be unable to do so because S3
is unavailable.

Reliability

Reliability is often related to availability, but it’s a slightly different concept. Specifically,
reliability refers to how well you can trust a system to protect data integrity and execute its
transactions. The instability associated with low availability often has the side effect of making
people not trust that their last request actually executed, which can cause data corruption in
relational database systems.

N O T E
A system that is frequently not available is clearly not reliable. A highly available system,

however, can still be unreliable if you don’t trust the data it presents. This could be the case,

for instance, if some process or component silently fails.

‡ I am ignoring the impact on performance of losing a particular node and focusing entirely on availability.
If your redundant application servers are operating at full capacity, the loss of one of them will result in
either degraded performance or loss of availability.

60 C H A P T E R T H R E E

Download at WoweBook.Com

Much of the reliability of your system depends on how you write the code that runs it. The
cloud presents a few issues outside the scope of your application code that can impact your
system’s reliability. Within the cloud, the most significant of these issues is how you manage
persistent data.

Because virtual instances tend to have lower availability than their physical counterparts, the
chance for data corruption is higher in the cloud than it is in a traditional data center. In
particular, any time you lose a server, the following factors become real concerns:

• You will lose any data stored on that instance that has not been backed up somewhere.

• Your block storage devices have a chance of becoming corrupted (just as they would in a
traditional data center).

I will discuss in detail strategies for dealing with these concerns in Chapter 4. For now, you
should remember two rules of thumb for dealing with reliability concerns in the cloud:

• Don’t store EC2 persistent data in an instance’s ephemeral mounts (not necessarily
applicable to other clouds).

• Snapshot your block volumes regularly.

Performance

For the most part, the things you worry about when performing a high-performance
transactional application for deployment in a physical data center applies to deployment in the
cloud. Standard best practices apply:

• Design your application so logic can be spread across multiple servers.

• If you are not clustering your database, segment database access so database reads can run
against slaves while writes execute against the master.

• Leverage the threading and/or process forking capabilities of your underlying platform to
take advantage of as much of each individual CPU core as possible.

Clustering versus independent nodes

Depending on the nature of your application, your choke points may be at the application
server layer or the database layer. At the application layer, you essentially have two options
for spreading processing out across multiple application servers:

• Use a load balancer to automatically split sessions across an indeterminate number of
independent nodes. Under this approach, each virtual server instance is entirely ignorant
of other instances. Therefore, each instance cannot contain any critical state information
beyond the immediate requests it is processing.

• Use a load balancer to route traffic to nodes within a clustered application server. Through
clustering, application server nodes communicate with each other to share state

B E F O R E T H E M O V E I N T O T H E C L O U D 61

Download at WoweBook.Com

information. Clustering has the advantage of enabling you to keep state information
within the application server tier; it has the disadvantage of being more complex and
ultimately limiting your long-term scalability. Another challenge with true clustering is
that many clustering architectures rely on multicasting—something not available in
Amazon EC2 (but available with GoGrid and Rackspace).

I am a strong proponent of the independent nodes approach. Although it can take some skill
to architect an application that will work using independent nodes, this architecture has the
benefit of being massively scalable. The trick is to make sure that your application state is
managed via the shared database, message queue, or other centralized data storage and that
all nodes are capable of picking up changes in the state in near real time.

EC2 performance constraints

EC2 systems, in general, perform well. When you select a particular EC2 machine, the CPU
power and RAM execute more or less as you would expect from a physical server. Network
speeds are outstanding. Differences show up in network and disk I/O performance.

W A R N I N G
EC2 32-bit instances are almost unbearably slow. This slowness is not so much an artifact of

EC2 as it is a reflection of the amount of CPU you get for $0.10/CPU-hour. They are

nevertheless useful for scenarios in which performance does not matter, but cost does:

prototyping, quick development, operations with low CPU requirements (such as load

balancing), etc.

The three different kinds of data storage have three very different performance profiles:

• Block storage has exactly the kind of performance you would expect for a SAN with other
applications competing for its use across a GB Ethernet connection. It has the most reliable
performance of any of the options, and that performance is reliably solid.

• S3 is slow, slow, slow (relatively speaking). Applications should not rely on S3 for real-
time access.

• Local storage is entirely unpredictable. In general, first writes to a block of local storage
are slower than subsequent writes. I have encountered outstanding disk I/O rates as well
as I/O rates worse than mounting a WebDAV drive over a 56K modem. I have not seen
any pattern that would help me provide an explanation for how to optimize performance.
If you start seeing terrible performance, an instance reboot§ generally seems to take care
of the problem (and you should take this into account with your uptime estimates).

§ An EC2 instance retains its state across reboots. Rebooting is not like terminating or losing the instance.

62 C H A P T E R T H R E E

Download at WoweBook.Com

EC2 disk performance serves the needs of most transactional web applications. If, however,
you have an application where disk I/O really matters, you will want to benchmark your
application in the EC2 environment before committing to deploying it in EC2.

Security
One of the items that critics of clouds repeatedly hammer on is cloud security. It seems that
having your data in the cloud on machines you do not control is very emotionally challenging
to people. It also introduces real regulatory and standards compliance issues that you need to
consider. In reality, the cloud can be made as secure as—or even more secure than—a
traditional data center. The way you approach information security, however, is radically
different.

A move into the cloud requires consideration of a number of critical security issues:

• Legal implications, regulatory compliance, and standards compliance issues are different
in the cloud.

• There is no perimeter in the Amazon cloud; a security policy focused on perimeter security
will not work with Amazon and should not be your focus, even with clouds that support
traditional perimeter security.

• Although there have been no publicized exploits, cloud data storage should assume a high-
risk profile.

• Virtualization technologies such as Xen may ultimately have their own vulnerabilities and
thus introduce new attack vectors.

Legal, Regulatory, and Standards Implications

Unfortunately, the law and standards bodies are a bit behind the times when it comes to
virtualization. Many laws and standards assume that any given server is a physically distinct
entity. Most of the time, the difference between a physical server and a virtual server is not
important to the spirit of a given law or standard, but the law or standard may nevertheless
specify a physical server because the concept of virtual servers was not common when the
specification was being written.

Before moving into the cloud, you must fully understand all of the relevant laws and standards
to which your applications and infrastructure are bound. In all probability, a cloud equivalent
will support the spirit of those regulations and standards, but you may have to talk to experts
in your specific requirements to find a definitive answer as to whether the cloud can be
considered conformant. In cases where a pure cloud infrastructure won’t support your needs,
you can often craft a mixed infrastructure that will still provide you with many of the benefits
of the cloud while still clearly complying with standards and regulations.

B E F O R E T H E M O V E I N T O T H E C L O U D 63

Download at WoweBook.Com

W A R N I N G
If you are looking for this book to answer the question, “Is the cloud compliant with

specification X?”, you will be disappointed. Amazon is working on SAS 70 compliance, and

a number of other cloud providers have environments that support different specifications.

You will still have to manage your own instances to your target specification. I cannot answer

compliance questions. Only a lawsuit or formal certification of your environment will

definitively answer them.

Beyond compliance issues, the cloud also introduces legal issues related to where your data is
stored:

• Your data may be exposed to subpoenas and other legal procedures that cite your cloud
provider instead of citing you, and that may invoke different rights than procedures
involving you directly.

• Some nations (in particular, EU nations) have strict regulations governing the physical
location of private data.

There Is No Perimeter in the Cloud

The Amazon cloud has no concept of a network segment controlled by firewalls and provides
you with minimal ability to monitor network traffic. Each instance sees only the network traffic
it is sending or receiving, and the initial policy of the default security group in EC2 allows no
incoming traffic at all.

N O T E
Other clouds support the concept of virtual LANs and provide traditional perimeter security.

It’s a good practice, however, not to rely on perimeter security as your primary approach to

system security, regardless of what cloud you are using.

In short, you don’t set up a firewall and a network IDS tool to secure your cloud infrastructure
(I know—I have trivialized perimeter security in the physical world). In Chapter 5, I cover how
you can effectively secure traffic in and out of your virtual servers without access to traditional
firewalls and network perimeters.

The Risk Profile for S3 and Other Cloud Storage Solutions Is Unproven

While the lack of traditional perimeter security makes security experts uncomfortable, the
placement of critical data assets into a data center that is under someone else’s control really
sends some cloud evaluators off the deep end.

64 C H A P T E R T H R E E

Download at WoweBook.Com

You never know where your data is when it’s in the cloud. However, you know some basic
parameters:

• Your data lies within a Xen virtual machine guest operating system or EBS volume, and
you control the mechanisms for access to that data.

• Network traffic exchanging data between instances is not visible to other virtual hosts.

• S3 storage lies in a public namespace but is accessible through objects that are private by
default.

• Amazon zeros out all ephemeral storage between uses.

You should therefore make the following assumptions about your data:

• Except for the possibility of virtualization-specific exploits, data within a virtual machine
instance is basically as secure as data sitting on a physical machine. If you are truly
paranoid, you can leverage encrypted filesystems.

• Your S3 objects are inherently insecure and any sensitive data should definitely be
encrypted with a strong encryption option before being placed in S3.

• Your block storage snapshots are probably reasonably secure. Though they are stored in
S3, they are not accessible via normal S3 access protocols. Nevertheless, if you are truly
paranoid, it would not hurt to encrypt your block storage volumes.

• You need to make sure that you retain copies of your data outside of your cloud provider
in case your cloud provider goes bankrupt or suffers some other business interruption.

Disaster Recovery
Disaster recovery is the art of being able to resume normal systems operations when faced with
a disaster scenario. What constitutes a disaster depends on your context. In general, I consider
a disaster to be an anomalous event that causes the interruption of normal operations. In a
traditional data center, for example, the loss of a hard drive is not a disaster scenario, because
it is more or less an expected event. A fire in the data center, on the other hand, is an abnormal
event likely to cause an interruption of normal operations.

The total and sudden loss of a complete server, which you might consider a disaster in a physical
data center, happens—relatively speaking—all of the time in the cloud. Although such a
frequency demotes such events from the realm of disaster recovery, you still need solid disaster
recovery processes to deal with them. As a result, disaster recovery is not simply a good idea
that you can keep putting off in favor of other priorities—it is a requirement.

What makes disaster recovery so problematic in a physical environment is the amount of
manual labor required to prepare for and execute a disaster recovery plan. Furthermore, fully
testing your processes and procedures is often very difficult. Too many organizations have a
disaster recovery plan that has never actually been tested in an environment that sufficiently
replicates real-world conditions to give them the confidence that the plan will work.

B E F O R E T H E M O V E I N T O T H E C L O U D 65

Download at WoweBook.Com

Disaster recovery in the cloud can be much more automatic. In fact, some cloud infrastructure
management tools will even automatically execute a disaster recovery plan without human
intervention.

What would happen if you lost your entire data center under a traditional IT infrastructure?
Hopefully, you have a great off-site backup strategy that would enable you to get going in
another data center in a few weeks. While we aren’t quite there yet, the cloud will soon enable
you to move an entire infrastructure from one cloud provider to another and even have that
move occur automatically in response to a catastrophic event.

Another advantage for the cloud here is the cost associated with a response to a disaster of that
level. Your recovery costs in the cloud are almost negligible beyond normal operations. With
a traditional data center, you must shell out new capital costs for a new infrastructure and then
make insurance claims. In addition, you can actually test out different disaster scenarios in the
cloud in ways that are simply unimaginable in a traditional environment.

I’ve covered the key concerns that affect the architecture of your applications and server
configuration as you consider moving into the cloud. The rest of this book guides you along
the path.

66 C H A P T E R T H R E E

Download at WoweBook.Com

C H A P T E R F O U R

Ready for the Cloud

TO A LARGE EXTENT, ONE SECRET will guide you in deploying an application capable of
leveraging all of the benefits of the cloud into the cloud:

Do what you would do anyway to build a highly scalable web application.

In the absence of specific regulatory or standards compliance issues, if your application can run
behind a load balancer across a number of application server nodes without any problems, you
are pretty much all set. This chapter will help you determine how to move that application
into the cloud.

On the other hand, many web applications have been built with a single server in mind, and
their creators aren’t sure whether they can safely move to a clustered environment. If you fit
into this category—or if you know for a fact your application won’t work in a clustered
environment—this chapter will tell you what you need to make your application ready for the
cloud.

Web Application Design
I cannot possibly address the intricacies of each of the many platforms developers use in
building web applications, but most of the issues you will face have nothing to do with your
underlying choice of platform. Whether written in .NET, Ruby, Java, PHP, or anything else,
web applications share a similar general architecture—and architecture makes or breaks an
application in the cloud.

Figure 4-1 illustrates the generic application architecture that web applications share.

67

Download at WoweBook.Com

You may move around or combine the boxes a bit, but you are certain to have some kind of
(most often scripting) language that generates content from a combination of templates and
data pulled from a model backed by a database. The system updates the model through actions
that execute transactions against the model.

System State and Protecting Transactions

The defining issue in moving to the cloud is how your application manages its state. Let’s look
at the problem of booking a room in a hotel.

The architecture from Figure 4-1 suggests that you have represented the room and the hotel
in a model. For the purposes of this discussion, it does not matter whether you have a tight
separation between model, view, and data, or have mixed them to some degree. The key point
is that there is some representation of the hotel and room data in your application space that
mirrors their respective states in the database.

How does the application state in the application tier change between the time the user makes
the request and the transaction is changed in the database?

The process might look something like this basic sequence:

1. Lock the data associated with the room.

2. Check the room to see whether it is currently available.

Browser

Database

Actions
(controller)

UI scripts
(view)

Business
objects
(model)

Content

FIGURE 4-1. Most web applications share the same basic architecture

68 C H A P T E R F O U R

Download at WoweBook.Com

3. If currently available, mark it as “booked” and thus no longer available.

4. Release the lock.

The problem with memory locks

You can implement this logic in many different ways, not all of which will succeed in the cloud.
A common Java approach that works well in a single-server environment but fails in a
multiserver context might use the following code:

public void book(Customer customer, Room room, Date[] days)
 throws BookingException {
 synchronized(room) { // synchronized "locks" the room object
 if(!room.isAvailable(days)) {
 throw new BookingException("Room unavailable.");
 }
 room.book(customer, days);
 }
}

Because the code uses the Java locking keyword synchronized, no other threads in the current
process can make changes to the room object.* If you are on a single server, this code will work
under any load supported by the server. Unfortunately, it will fail miserably in a multiserver
context.

The problem with this example is the memory-based lock that the application grabs. If you had
two clients making two separate booking requests against the same server, Java would allow
only one of them to execute the synchronized block at a time. As a result, you would not end
up with a double booking.

On the other hand, if you had each customer making a request against different servers (or
even distinct processes on the same server), the synchronized blocks on each server could
execute concurrently. As a result, the first customer to reach the room.book() call would lose
his reservation because it would be overwritten by the second. Figure 4-2 illustrates the double-
booking problem.

The non-Java way of expressing the problem is that if your transactional logic uses memory-
based locking to protect the integrity of a transaction, that transaction will fail in a multiserver
environment—and thus it won’t be able to take advantage of the cloud’s ability to dynamically
scale application processing.

One way around this problem is to use clustering technologies or cross-server shared memory
systems. Another way to approach the problem is to treat the database as the authority on the
state of your system.

* I beg Java programmers to forgive my oversimplification and technically incorrect description of the
synchronized keyword. I intend the explanation to help readers in general understand what is happening
in this context and not to teach people about multithreading in Java.

R E A D Y F O R T H E C L O U D 69

Download at WoweBook.Com

Browser A Browser B

book()

book()

isAvailable()

isAvailable()

update()

commit()

update()

commit()

bo

Room (Server A) Room (Server B) Database

FIGURE 4-2. The second client overwrites the first, causing a double-booking

WHAT IF MY APPLICATION USES MEMORY LOCKS?
I can hear a lot of you—especially those of you who have massively multithreaded applications—
cursing me right now. If you find yourself in a situation in which you use memory-based locking and
reworking the application away from that model is impractical, you can still move into the cloud.
You simply won’t be able to scale your application across multiple application servers.

The way around this concern is to lock everything using a shared locking mechanism—typically
your database engine. The only other common alternative is to write some kind of home-grown
distributed transaction management system. But why do that when your database already has one?

Transactional integrity through stored procedures

I am not a huge fan of stored procedures. A key benefit of stored procedures, however, is that
they enable you to leverage the database to manage the integrity of your transactions. After
all, data integrity is the main job of your database engine!

Instead of doing all of the booking logic in Java, you could leverage a MySQL stored procedure:

DELIMITER |

CREATE PROCEDURE book

70 C H A P T E R F O U R

Download at WoweBook.Com

(
 IN customerId BIGINT,
 IN roomId BIGINT,
 IN startDate DATE,
 IN endDate DATE,
 OUT success CHAR(1)
)
BEGIN
 DECLARE n DATE;
 DECLARE cust BIGINT;
 SET success = 'Y';
 SET n = startDate;

 bookingAttempt:
 REPEAT
 SELECT customer INTO cust FROM booking
 WHERE room_id = roomId AND booking_date = n;
 IF cust IS NOT NULL AND cust <> customerId
 THEN
 SET success = 'N';
 LEAVE bookingAttempt;
 END IF;
 UPDATE booking SET customer = customerId
 WHERE room_id = roomId AND booking_date = n;
 SET n = DATE_ADD(n, INTERVAL 1 DAY);
 UNTIL n > endDate
 END REPEAT;
 IF success = 'Y' THEN
 COMMIT;
 ELSE
 ROLLBACK;
 END IF;
END
|

This method goes through each row of the booking table in your MySQL database and marks
it booked by the specified customer. If it encounters a date when the room is already booked,
the transaction fails and rolls back.

An example using the stored procedure follows, using Python:

def book(customerId, roomId, startDate, endDate):
 conn = getConnection();
 c = conn.cursor();
 c.execute("CALL book(%s, %s, %s, %s, @success)", \
 (customerId, roomId, startDate, endDate));
 c.execute("SELECT @success");
 row = c.fetchone();
 success = row[0];
 if success == "Y":
 return 1
 else:
 report 0

R E A D Y F O R T H E C L O U D 71

Download at WoweBook.Com

Even if you have two different application servers running two different instances of your
Python application, this transaction will fail, as desired, for the second customer, regardless of
the point at which the second customer’s transaction begins.

Two alternatives to stored procedures

As I noted earlier, I am not a fan of stored procedures. They have the advantage of executing
faster that the same logic in an application language. Furthermore, multiserver transaction
management through stored procedures is very elegant. But I have three key objections:

• Stored procedures are not portable from one database to another.

• They require an extended understanding of database programming—something that may
not be available to all development teams.

• They don’t completely solve the problem of scaling transactions across application servers
under all scenarios. You still need to write your applications to use them wisely, and the
result may, in fact, make your application more complicated.

In addition to these core objections, I personally strongly prefer a very strict separation of
presentation, business modeling, business logic, and data.

The last objection is subjective and perhaps a nasty personal quirk. The first two objections,
however, are real problems. After all, how many of you reading this book have found
yourselves stuck with Oracle applications that could very easily work in MySQL if it weren’t
for all the stored procedures? You are paying a huge Oracle tax just because you used stored
procedures to build your applications!

The second objection is a bit more esoteric. If you have the luxury of a large development staff
with a diverse skill set, you don’t see this problem. If you are in a small company that needs
each person to wear multiple hats, it helps to have an application architecture that requires
little or no database programming expertise.

To keep your logic at the application server level while still maintaining multiserver
transactional integrity, you must either create protections against dirty writes or create a lock
in the database.

In Chapter 3 of O’Reilly’s Java Database Best Practices (http://oreilly.com/catalog/
9780596005221/index.html), I describe in detail transaction management policies for Java
systems managing their transaction logic in the application server tier. One of the techniques
I feature—and generally recommend for its speed benefits, whatever your overall
architecture—is the use of a last update timestamp and modifying agent in your updates.

The booking logic from the stored procedure essentially was an update to the booking table:

UPDATE booking SET customer = ? WHERE booking_id = ?;

72 C H A P T E R F O U R

Download at WoweBook.Com

http://oreilly.com/catalog/9780596005221/index.html
http://oreilly.com/catalog/9780596005221/index.html
http://oreilly.com/catalog/9780596005221/index.html

If you add last_update_timestamp and last_update_user fields, that SQL would operate more
effectively in a multiserver environment:

UPDATE booking
SET customer = ?, last_update_timestamp = ?, last_update_user = ?
WHERE booking_id = ? AND last_update_timestamp = ? AND last_update_user = ?;

In this situation, the first client will attempt to book the room for the specified date and succeed.
The second client then attempts to update the row but gets no matches since the timestamp it
reads—as well as the user ID of the user on the client—will not match the values updated by
the first client. The second client realizes it has updated zero rows and subsequently displays
an error message. No double booking!

This approach works well as long as you do not end up structuring transactions in a way that
will create deadlocks. A deadlock occurs between two transactions when each transaction is
waiting on the other to release a lock. Our reservations system example is an application in
which a deadlock is certainly possible.

Because we are booking a range of dates in the same transaction, poorly structured application
logic could cause two clients to wait on each other as one attempts to book a date already
booked by the other, and vice versa. For example, if you and I are looking to book both Tuesday
and Wednesday, but for whatever reason your client first tries Wednesday and my client first
tries Tuesday, we will end up in a deadlock where I wait on you to commit your Wednesday
booking and you wait on me to commit my Tuesday booking.

This somewhat contrived scenario is easy to address by making sure that you move sequentially
through each day. Other application logic, however, may not have as obvious a solution.

Another alternative is to create a field for managing your locks. The room table, for example,
might have two extra columns for booking purposes: locked_by and locked_timestamp. Before
starting the transaction that books the rooms, update the room table and commit the update.
Once your booking transaction completes, release the lock by nulling out those fields prior to
committing that transaction.

Because this approach requires two different database transactions, you are no longer
executing the booking as a single atomic transaction. Consequently, you risk leaving an open
lock that prevents others from booking any rooms on any dates. You can eliminate this problem
through two tricks:

• The room is considered unlocked not only when the fields are NULL, but also when the
locked_timestamp has been held for a long period of time.

• When updating the lock at the end of your booking transaction, use the locked_by and
locked_timestamp fields in the WHERE clause. Thus, if someone else steals a lock out from
under you, you only end up rolling back your transaction.

Both of these approaches are admittedly more complex than taking advantage of stored
procedures. Regardless of what approach you use, however, the important key for the cloud

R E A D Y F O R T H E C L O U D 73

Download at WoweBook.Com

is simply making sure that you are not relying on memory locking to maintain your application
state integrity.

When Servers Fail

The ultimate architectural objective for the cloud is to set up a running environment where
the failure of any given application server ultimately doesn’t matter. If you are running just
one server, that failure will obviously matter at some level, but it will still matter less than
losing a physical server.

One trick people sometimes use to get around the problems described in the previous section
is data segmentation—also known as sharding. Figure 4-3 shows how you might use data
segmentation to split processing across multiple application servers.

In other words, each application server manages a subset of data. As a result, there is never
any risk that another server will overwrite the data. Although segmentation has its place in
scaling applications, that place is not at the application server in a cloud cluster. A segmented
application server cluster ultimately has a very low availability rating, as the failure of any
individual server does matter.

The final corollary to all of this discussion of application state and server failure is that
application servers in a cloud cannot store any state data beyond caching data. In other words,

Browser

Application
server

North
America

Customer
database

South
America

FIGURE 4-3. Supporting different hotels on different servers guarantees no double bookings

74 C H A P T E R F O U R

Download at WoweBook.Com

if you need to back up your application server, you have failed to create a solid application
server architecture for the cloud. All state information—including binary data—belongs in the
database, which must be on a persistent system.†

Machine Image Design
Two indirect benefits of the cloud are:

• It forces discipline in deployment planning

• It forces discipline in disaster recovery

Thanks to the way virtualized servers launch from machine images, your first step in moving
into any cloud infrastructure is to create a repeatable deployment process that handles all the
issues that could come up as the system starts up. To ensure that it does, you need to do some
deployment planning.

The machine image (in Amazon, the AMI) is a raw copy of your operating system and core
software for a particular environment on a specific platform. When you start a virtual server,
it copies its operating environment from the machine image and boots up. If your machine
image contains your installed application, deployment is nothing more than the process of
starting up a new virtual instance.

Amazon Machine Image Data Security

When you create an Amazon machine image, it is encrypted and stored in an Amazon S3
bundle. One of two keys can subsequently decrypt the AMI:

• Your Amazon key

• A key that Amazon holds

Only your user credentials have access to the AMI. Amazon needs the ability to decrypt the
AMI so it can actually boot an instance from the AMI.

DON’T STORE SENSITIVE DATA IN AN AMI
Even though your AMI is encrypted, I strongly recommend never storing any sensitive information
in an AMI. Not only does Amazon have theoretical access to decrypt the AMI, but there also are

† If you have read my article “Ten MySQL Best Practices” (http://www.onlamp.com/pub/a/onlamp/2002/
07/11/MySQLtips.html), you may have noted the contradiction between my admonition against storing
binary data in MySQL and what I am recommending here. You should actually be caching the binary
assets on the application server so that you do not need to pull them in real time from the database server.
By doing so, you will get around my objections to storing binary data in MySQL.

R E A D Y F O R T H E C L O U D 75

Download at WoweBook.Com

http://www.onlamp.com/pub/a/onlamp/2002/07/11/MySQLtips.html
http://www.onlamp.com/pub/a/onlamp/2002/07/11/MySQLtips.html

mechanisms that enable you to make your AMI public and thus perhaps accidentally share whatever
sensitive data you were maintaining in the AMI.

For example, if one company sues another Amazon customer, a court may subpoena the other
Amazon customer’s data. Unfortunately, it is not uncommon for courts to step outside the bounds
of common sense and require a company such as Amazon to make available all Amazon customer
data. If you want to make sure your data is never exposed as the result of a third-party subpoena,
you should not store that data in an Amazon AMI.

Instead, encrypt it separately and load it into your instance at launch so that Amazon will not have
the decryption keys and thus the data cannot be accessed, unless you are a party to the subpoena.

What Belongs in a Machine Image?

A machine image should include all of the software necessary for the runtime operation of a
virtual instance based on that image and nothing more. The starting point is obviously the
operating system, but the choice of components is absolutely critical. The full process of
establishing a machine image consists of the following steps:

1. Create a component model that identifies what components and versions are required to
run the service that the new machine image will support.

2. Separate out stateful data in the component model. You will need to keep it out of your
machine image.

3. Identify the operating system on which you will deploy.

4. Search for an existing, trusted baseline public machine image for that operating system.

5. Harden your system using a tool such as Bastille.

6. Install all of the components in your component model.

7. Verify the functioning of a virtual instance using the machine image.

8. Build and save the machine image.

The starting point is to know exactly what components are necessary to run your service.
Figure 4-4 shows a sample model describing the runtime components for a MySQL database
server.

In this case, the stateful data exists in the MySQL directory, which is externally mounted as a
block storage device. Consequently, you will need to make sure that your startup scripts mount
your block storage device before starting MySQL.

Because the stateful data is assumed to be on a block storage device, this machine image is
useful in starting any MySQL databases, not just a specific set of MySQL databases.

76 C H A P T E R F O U R

Download at WoweBook.Com

The services you want to run on an instance generally dictate the operating system on which
you will base the machine image. If you are deploying a .NET application, you probably will
use one of the Amazon Windows images. A PHP application, on the other hand, probably will
be targeting a Linux environment. Either way, I recommend searching some of the more
trusted prebuilt, basic AMIs for your operating system of choice and customizing from there.
Chapter 2 has a much deeper discussion of the technical details of creating an AMI.

W A R N I N G
Avoid using “kitchen sink” Linux distributions. Each machine image should be a hardened

operating system and have only the tools absolutely necessary to serve its function.

Hardening an operating system is the act of minimizing attack vectors into a server. Among
other things, hardening involves the following activities:

• Removing unnecessary services.

• Removing unnecessary accounts.

MySQL
database libmysql

MySQL
client
tools

MySQL
Python

Postfix
(no

inbound
mail)

OSSEC

Monitoring
system

FIGURE 4-4. Software necessary to support a MySQL database server

R E A D Y F O R T H E C L O U D 77

Download at WoweBook.Com

• Running all services as a role account (not root) when possible.

• Running all services in a restricted jail when possible.

• Verifying proper permissions for necessary system services.

The best way to harden your Linux system is to use a proven hardening tool such as Bastille.
I go into more detail on securing and hardening your cloud environments in Chapter 5.

Now that you have a secure base from which to operate, it is time to actually install the software
that this system will support. In the case of the current example, it’s time to install MySQL.

When installing your server-specific services, you may have to alter the way you think about
the deployment thanks to the need to keep stateful data out of the machine image. For a
MySQL server, you would probably keep stateful data on a block device and mount it at system
startup. A web server, on the other hand, might store stateful media assets out in a cloud storage
system such as Amazon S3 and pull it over into the runtime instance on startup.

Different applications will definitely require different approaches based on their unique
requirements. Whatever the situation, you should structure your deployment so that the
machine image has the intelligence to look for its stateful data upon startup and provide your
machine image components with access to that data before they need it.

Once you have the deployment structured the right way, you will need to test it. That means
testing the system from launch through shutdown and recovery. Therefore, you need to take
the following steps:

1. Build a temporary image from your development instance.

2. Launch a new instance from the temporary image.

3. Verify that it functions as intended.

4. Fix any issues.

5. Repeat until the process is robust and reliable.

At some point, you will end up with a functioning instance from a well-structured machine
image. You can then build a final instance and go have a beer (or coffee).

A Sample MySQL Machine Image

The trick to creating a machine image that supports database servers is knowing how your
database engine of choice stores its data. In the case of MySQL, the database engine has a
data directory for its stateful data. This data directory may actually be called any number of
things (/usr/local/mysql/data, /var/lib/mysql, etc.), but it is the only thing other than the
configuration file that must be separated from your machine image. In a typical custom build,
the data directory is /usr/local/mysql/data.

78 C H A P T E R F O U R

Download at WoweBook.Com

N O T E
If you are going to be supporting multiple machine images, it often helps to first build a

hardened machine image with no services and then build each service-oriented image from

that base.

Once you start an instance from a standard image and harden it, you need to create an elastic
block storage volume and mount it.‡ The standard Amazon approach is to mount the volume
off of /mnt (e.g., /mnt/database). Where you mount it is technically unimportant, but it can
help reduce confusion to keep the same directory for each image.

You can then install MySQL, making sure to install it within the instance’s root filesystem
(e.g., /usr/local/mysql). At that point, move the data over into the block device using the
following steps:

1. Stop MySQL if the installation process automatically started it.

2. Move your data directory over into your mount and give it a name more suited to
mounting on a separate device (e.g., /mnt/database/mysql).

3. Change your my.cnf file to point to the new data directory.

You now have a curious challenge on your hands: MySQL cannot start up until the block device
has been mounted, but a block device under Amazon EC2 cannot be attached to an instance
of a virtual machine until that instance is running. As a result, you cannot start MySQL through
the normal boot-up procedures. However, you can end up where you want by enforcing the
necessary order of events: boot the virtual machine, mount the device, and finally start MySQL.
You should therefore carefully alter your MySQL startup scripts so that the system will no
longer start MySQL on startup, but will still shut the MySQL engine down on shutdown.

W A R N I N G
Do not simply axe MySQL from your startup scripts. Doing so will prevent MySQL from

cleanly shutting down when you shut down your server instance. You will thus end up with

a corrupt database on your block storage device.

The best way to effect this change is to edit the MySQL startup script to wait for the presence
of the MySQL data directory before starting the MySQL executable.

Amazon AMI Philosophies

In approaching AMI design, you can follow one of two core philosophies:

• A minimalist approach in which you build a few multipurpose machine images.

‡ I describe this process for Amazon EC2 in Chapter 2.

R E A D Y F O R T H E C L O U D 79

Download at WoweBook.Com

• A comprehensive approach in which you build numerous purpose-specific machine
images.

I am a strong believer in the minimalist approach. The minimalist approach has the advantage
of being easier for rolling out security patches and other operating-system-level changes. On
the flip side, it takes a lot more planning and EC2 skills to structure a multipurpose AMI capable
of determining its function after startup and self-configuring to support that function. If you
are just getting started with EC2, it is probably best to take the comprehensive approach and
use cloud management tools to eventually help you evolve into a library of minimalist machine
images.

For a single application installation, you won’t likely need many machine images, and thus
the difference between a comprehensive approach and a minimalist approach is negligible.
SaaS applications—especially ones that are not multitenant—require a runtime deployment
of application software.

Runtime deployment means uploading the application software—such as the MySQL
executable discussed in the previous section—to a newly started virtual instance after it has
started, instead of embedding it in the machine image. A runtime application deployment is
more complex (and hence the need for cloud management tools) than simply including the
application in the machine image, but it does have a number of major advantages:

• You can deploy and remove applications from a virtual instance while it is running. As a
result, in a multiapplication environment, you can easily move an application from one
cluster to another.

• You end up with automated application restoration. The application is generally deployed
at runtime using the latest backup image. When you embed the application in an image,
on the other hand, your application launch is only as good as the most recent image build.

• You can avoid storing service-to-service authentication credentials in your machine image
and instead move them into the encrypted backup from which the application is deployed.

Privacy Design
In Chapter 5, I talk about all aspects of security and the cloud. As we design your overall
application architecture in this chapter, however, it is important to consider how you approach
an application architecture for systems that have a special segment of private data, notably
e-commerce systems that store credit cards and health care systems with health data. We take
a brief look at privacy design here, knowing that a full chapter of security awaits us later.

Privacy in the Cloud

The key to privacy in the cloud—or any other environment—is the strict separation of sensitive
data from nonsensitive data followed by the encryption of sensitive elements. The simplest

80 C H A P T E R F O U R

Download at WoweBook.Com

example is storing credit cards. You may have a complex e-commerce application storing many
data relationships, but you need to separate out the credit card data from the rest of it to start
building a secure e-commerce infrastructure.

N O T E
When I say you need to separate the data, what I mean is that access to either of the two

pieces of your data cannot compromise the privacy of the data. In the case of a credit card,

you need to store the credit card number on a different virtual server in a different network

segment and encrypt that number. Access to the first set of data provides only customer

contact info; access to the credit card number provides only an encrypted credit card number.

Figure 4-5 provides an application architecture in which credit card data can be securely
managed.

It’s a pretty simple design that is very hard to compromise as long as you take the following
precautions:

e-commerce
database

Application server
network

e-commerce
server

Credit card
database

Credit card
network

Credit card
processor

Third-party credit
card gateway network

Credit card
gateway

FIGURE 4-5. Host credit card data behind a web service that encrypts credit card data

R E A D Y F O R T H E C L O U D 81

Download at WoweBook.Com

• The application server and credit card server sit in two different security zones with only
web services traffic from the application server being allowed into the credit card processor
zone.

• Credit card numbers are encrypted using a customer-specific encryption key.

• The credit card processor has no access to the encryption key, except for a short period of
time (in memory) while it is processing a transaction on that card.

• The application server never has the ability to read the credit card number from the credit
card server.

• No person has administrative access to both servers.

Under this architecture, a hacker has no use for the data on any individual server; he must
hack both servers to gain access to credit card data. Of course, if your web application is poorly
written, no amount of structure will protect you against that failing.

You therefore need to minimize the ability of a hacker to use one server to compromise the
other. Because this problem applies to general cloud security, I cover it in detail in Chapter 5.
For now, I’ll just list a couple rules of thumb:

• Make sure the two servers have different attack vectors. In other words, they should not
be running the same software. By following this guideline, you guarantee that whatever
exploit compromised the first server is not available to compromise the second server.

• Make sure that neither server contains credentials or other information that will make it
possible to compromise the other server. In other words, don’t use passwords for user
logins and don’t store any private SSH keys on either server.

Managing the credit card encryption

In order to charge a credit card, you must provide the credit card number, an expiration date,
and a varying number of other data elements describing the owner of the credit card. You may
also be required to provide a security code.

This architecture separates the basic capture of data from the actual charging of the credit card.
When a person first enters her information, the system stores contact info and some basic credit
card profile information with the e-commerce application and sends the credit card number
over to the credit card processor for encryption and storage.

The first trick is to create a password on the e-commerce server and store it with the customer
record. It’s not a password that any user will ever see or use, so you should generate something
complex using the strongest password guidelines. You should also create a credit card record
on the e-commerce server that stores everything except the credit card number. Figure 4-6
shows a sample e-commerce data model.

82 C H A P T E R F O U R

Download at WoweBook.Com

With that data stored in the e-commerce system database, the system then submits the credit
card number, credit card password, and unique credit card ID from the e-commerce system to
the credit card processor.

The credit card processor does not store the password. Instead, it uses the password as salt to
encrypt the credit card number, stores the encrypted credit card number, and associates it with
the credit card ID. Figure 4-7 shows the credit card processor data model.

Neither system stores a customer’s security code, because the credit card companies do not
allow you to store this code.

Processing a credit card transaction

When it comes time to charge the credit card, the e-commerce service submits a request to the
credit card processor to charge the card for a specific amount. The e-commerce system refers
to the credit card on the credit card processor using the unique ID that was created when the
credit card was first inserted. It passes over the credit card password, the security code, and
the amount to be charged. The credit card processor then decrypts the credit card number for

customer
customer_id(PK) BIGINT
first_name VARCHAR(100)
last_name VARCHAR(100)

customer
credit_card_id(PK) BIGINT
customer BIGINT
last_four CHAR(4)
expiration_month INT
expiration_year INT
password VARCHAR(50)

FIGURE 4-6. The e-commerce system stores everything but the credit card number and security code

credit_card
credit_card_id(PK) BIGINT
cc_number VARCHAR(255)

FIGURE 4-7. The credit card processor stores the encrypted credit card number and associates it with the e-commerce credit card

ID

R E A D Y F O R T H E C L O U D 83

Download at WoweBook.Com

the specified credit card using the specified password. The unencrypted credit card number,
security code, and amount are then passed to the bank to complete the transaction.

If the e-commerce application is compromised

If the e-commerce application is compromised, the attacker has access only to the nonsensitive
customer contact info. There is no mechanism by which he can download that database and
access credit card information or otherwise engage in identity theft. That would require
compromising the credit card processor separately.

Having said all of that, if your e-commerce application is insecure, an attacker can still assume
the identity of an existing user and place orders in their name with deliveries to their address.
In other words, you still need to worry about the design of each component of the system.

N O T E
Obviously, you don’t want intruders gaining access to your customer contact data either. In

the context of this section, my references to customer contact data as “nonsensitive” is a

relative term. Your objective should be to keep an intruder from getting to either bit of data.

If the credit card processor is compromised

Compromising the credit card processor is even less useful than compromising the e-commerce
application. If an attacker gains access to the credit card database, all he has are random unique
IDs and strongly encrypted credit card numbers—each encrypted with a unique encryption
key. As a result, the attacker can take the database offline and attempt to brute-force decrypt
the numbers, but each number will take a lot of time to crack and, ultimately, provide the
hacker with a credit card number that has no individually identifying information to use in
identity theft.

Another attack vector would be to figure out how to stick a Trojan application on the
compromised server and listen for decryption passwords. However, if you are running
intrusion detection software as suggested in Chapter 5, even this attack vector becomes
unmanageable.

When the Amazon Cloud Fails to Meet Your Needs

The architecture I described in the previous section matches traditional noncloud deployments
fairly closely. You may run into challenges deploying in the Amazon cloud, however, because
of a couple of critical issues involving the processing of sensitive data:

• Some laws and specifications impose conditions on the political and legal jurisdictions
where the data is stored. In particular, companies doing business in the EU may not store
private data about EU citizens on servers in the U.S. (or any other nation falling short of
EU privacy standards).

84 C H A P T E R F O U R

Download at WoweBook.Com

• Some laws and specifications were not written with virtualization in mind. In other words,
they specify physical servers in cases where virtual servers would do identically well,
simply because a server meant a physical server at the time the law or standard was
written.

The first problem has a pretty clear solution: if you are doing business in the EU and managing
private data on EU citizens, that data must be handled on servers with a physical presence in
the EU, stored on storage devices physically in the EU, and not pass through infrastructure
managed outside the EU.

Amazon provides a presence in both the U.S. and EU. As a result, you can solve the first problem
by carefully architecting your Amazon solution. It requires, however, that you associate the
provisioning of instances and storage of data with your data management requirements.

The second issue is especially problematic for solutions such as Amazon that rely entirely on
virtualization. In this case, however, it’s for fairly stupid reasons. You can live up to the spirit
of the law or specification, but because the concept of virtualization was not common at the
time, you cannot live up to the letter of the law or specification. The workaround for this
scenario is similar to the workaround for the first problem.

In solving these challenges, you want to do everything to realize as many of the benefits of the
cloud as possible without running private data through the cloud and without making the
overall complexity of the system so high that it just isn’t worth it. Cloud providers such as
Rackspace and GoGrid tend to make such solutions easier than attempting a hybrid solution
with Amazon and something else.

WHAT IS SENSITIVE?
When it comes to laws and standards, what you may think of as sensitive may not be what the law
has in mind. In some cases, for example, EU privacy laws consider IP addresses to be personally
identifying information. I am not a legal expert and therefore am not even going to make any attempts
to define what information is private. But once you and your legal advisers have determined what
must be protected as private, follow the general rule in this section: private data goes into the privacy-
protected server and nonprivate data can go into the cloud.

To meet this challenge, you must route and store all private information outside the cloud, but
execute as much application logic as possible inside the cloud. You can accomplish this goal by
following the general approach I described for credit card processing and abstracting the
concepts out into a privacy server and a web application server:

• The privacy server sits outside the cloud and has the minimal support structures necessary
to handle your private data.

R E A D Y F O R T H E C L O U D 85

Download at WoweBook.Com

• The web application server sits inside the cloud and holds the bulk of your application
logic.

e-commerce
database

Application server
network

e-commerce
server

Privacy
database

Privacy
network

Privacy
server

Credit card
database

Credit card
network

Credit card
processor

Third-party credit
card gateway network

Credit card
gateway

FIGURE 4-8. Pulling private data out of the cloud creates three different application components

Because the objective of a privacy server is simply to physically segment out private data, you
do not necessarily need to encrypt everything on the privacy server. Figure 4-8 illustrates how
the e-commerce system might evolve into a privacy architecture designed to store all private
data outside of the cloud.

As with the cloud-based e-commerce system, you store credit card data on its own server in
its own network segment. The only difference for the credit card processor is that this time it
is outside of the cloud.

The new piece to this puzzle is the customer’s personally identifying information. This data
now exists on its own server outside of the cloud, but still separate from credit card data. When
saving user profile information, those actions execute against the privacy server instead of the
main web application. Under no circumstances does the main web application have any access

86 C H A P T E R F O U R

Download at WoweBook.Com

to personally identifying information, unless that data is aggregated before being presented to
the web application.

How useful this architecture is depends heavily on how much processing you are doing that
has nothing to do with private data. If all of your transactions involve the reading and writing
of private data, you gain nothing by adding this complexity. On the other hand, if the
management of private data is just a tiny piece of the application, you can gain all of the
advantages of the cloud for the other parts of the application while still respecting any
requirements around physical data location.

Database Management
The trickiest part of managing a cloud infrastructure is the management of your persistent
data. Persistent data is essentially any data that needs to survive the destruction of your cloud
environment. Because you can easily reconstruct your operating system, software, and simple
configuration files, they do not qualify as persistent data. Only the data that cannot be
reconstituted qualify. If you are following my recommendations, this data lives in your
database engine.

The problem of maintaining database consistency is not unique to the cloud. The cloud simply
brings a new challenge to an old problem of backing up your database, because your database
server in the cloud will be much less reliable than your database server in a physical
infrastructure. The virtual server running your database will fail completely and without
warning. Count on it.

Whether physical or virtual, when a database server fails, there is the distinct possibility that
the files that comprise the database state will get corrupted. The likelihood of that disaster
depends on which database engine you are using, but it can happen with just about any engine
out there.

Absent of corruption issues, dealing with a database server in the cloud is very simple. In fact,
it is much easier to recover from the failure of a server in a virtualized environment than in
the physical world: simply launch a new instance from your database machine image, mount
the old block storage device, and you are up and running.

N O T E
Use block storage devices for database storage. Block storage devices provide the best

performance option (better than local storage) and make for more flexible database backup

strategies.

Clustering or Replication?

The most effective mechanism for avoiding corruption is leveraging the capabilities of a
database engine that supports true clustering. In a clustered database environment, multiple

R E A D Y F O R T H E C L O U D 87

Download at WoweBook.Com

database servers act together as a single logical database server. The mechanics of this process
vary from database engine to database engine, but the result is that a transaction committed
to the cluster will survive the failure of any one node and maintain full data consistency. In
fact, clients of the database will never know that a node went down and will be able to continue
operating.

Unfortunately, database clustering is very complicated and generally quite expensive.

• Unless you have a skilled DBA on hand, you should not even consider undertaking the
deployment of a clustered database environment.

• A clustered database vendor often requires you to pay for the most expensive licenses to
use the clustering capabilities in the database management system (DBMS). Even if you
are using MySQL clustering, you will have to pay for five machine instances to effectively
run that cluster.

• Clustering comes with significant performance problems. If you are trying to cluster across
distinct physical infrastructures—in other words, across availability zones—you will pay
a hefty network latency penalty.

W A R N I N G
Although there are few challenges in clustering a database in the cloud, one is significant:

the I/O challenges inherent in virtualized systems. In particular, write operations in a

clustered system are very network intensive. As a result, heavy write applications will

perform significantly worse in a clustered virtualized environment than in a standard data

center.

The alternative to clustering is replication. A replication-based database infrastructure
generally has a main server, referred to as the database master. Client applications execute
write transactions against the database master. Successful transactions are then replicated to
database slaves.

Replication has two key advantages over clustering:

• It is generally much simpler to implement.

• It does not require an excessive number of servers or expensive licenses.

W A R N I N G
MySQL replication is not a viable solution for anyone who absolutely, positively cannot lose

one byte of data as a result of a server failure. If you are in this kind of business, you probably

can afford clustering.

88 C H A P T E R F O U R

Download at WoweBook.Com

Unfortunately, replication is not nearly as reliable as clustering. A database master can, in
theory, fail after it has committed a transaction locally but before the database slave has
received it. In that event, you would have a database slave that is missing data. In fact, when
a database master is under a heavy load, the database slave can actually fall quite far behind
the master. If the master is somehow corrupted, it can also begin replicating corrupted data.

Apart from reliability issues, a replicated environment does not failover as seamlessly as a
clustered solution. When your database master fails, clients using that master for write
transactions cannot function until the master is recovered. On the other hand, when a node
in a cluster fails, the clients do not notice the failure because the cluster simply continues
processing transactions.

Using database clustering in the cloud

The good news, in general, is that the cloud represents few specific challenges to database
clustering. The bad news is that every single database engine has a different clustering
mechanism (or even multiple approaches to clustering) and thus an in-depth coverage of
cloud-based clustering is beyond the scope of this book. I can, however, provide a few
guidelines:

• A few cluster architectures exist purely for performance and not for availability. Under
these architectures, single points of failure may still exist. In fact, the complexity of
clustering may introduce additional points of failure.

• Clusters designed for high availability are often slower at processing individual write
transactions, but they can handle much higher loads than standalone databases. In
particular, they can scale to meet your read volume requirements.

• Some solutions—such as MySQL—may require a large number of servers to operate
effectively. Even if the licensing costs for such a configuration are negligible, the cloud
costs will add up.

• The dynamic nature of IP address assignment within a cloud environment may add new
challenges in terms of configuring clusters and their failover rules.

Using database replication in the cloud

For most nonmission-critical database applications, replication is a “good enough” solution that
can save you a lot of money and potentially provide you with opportunities for performance
optimization. In fact, a MySQL replication system in the cloud can provide you with a flawless
backup and disaster recovery system as well as availability that can almost match that of a
cluster. Because the use of replication in the cloud can have such a tremendous impact
compared to replication in a traditional data center, we’ll go into a bit more detail on using
replication in the cloud than we did with clustering.

Figure 4-9 shows a simple replication environment.

R E A D Y F O R T H E C L O U D 89

Download at WoweBook.Com

In this structure, you have a single database server of record (the master) replicating to one or
more copies (the slaves). In general,§ the process that performs the replication from the master
to the slave is not atomic with respect to the original transaction. In other words, just because
a transaction successfully commits on the master does not mean that it successfully replicated
to any slaves. The transactions that do make it to the slaves are generally atomic, so although
a slave may be out of sync, the database on the slave should always be in an internally
consistent state (uncorrupted).

Under a simple setup, your web applications point to the database master. Consequently, your
database slave can fail without impacting the web application. To recover, start up a new
database slave and point it to the master.

Recovering from the failure of a database master is much more complicated. If your cloud
provider is Amazon, it also comes with some extra hurdles you won’t see in a standard
replication setup.

Ideally, you will recover your database master by starting a new virtual server that uses your
database machine image and then mounting the volume that was formerly mounted by the
failed server. The failure of your master, however, may have resulted in the corruption of the
files on that volume. At this point, you will turn to the database slave.

A database can recover using a slave in one of two ways:

• Promotion of a slave to database master (you will need to launch a replacement slave)

• Building a new database master and exporting the current state from a slave to a new
master

Application
server

Database
master

Database
slave

FIGURE 4-9. A simple replication (arrows show dependency)

§ This situation may not be the case for every configuration of every database engine in a replication
architecture. Unless you know your replication is atomic with respect to the original transaction,
however, assume your slave can be out of sync with the master at times.

90 C H A P T E R F O U R

Download at WoweBook.Com

Promotion is the fastest mechanism for recovery and the approach you almost certainly want
to take, unless you have a need for managing distinct database master and database slave
machine images. If that’s the case, you may need to take the more complex recovery approach.

W A R N I N G
To develop a bulletproof replication architecture, you need to look beyond recovery from

the slave. It is possible that your slave process stopped running long before the master failed

or, worse, that the slave went down with the master. You should therefore have the

capability of restoring from a volume snapshot and, in the worst-case scenario, from a

database dump in your cloud storage system. You should also have monitoring slave status

as a key part of your cloud monitoring infrastructure.

As with other components in your web application architecture, putting your database in a
replication architecture gives it the ability to rapidly recover from a node failure and, as a result,
significantly increases overall system availability rating.

For a more detailed discussion of MySQL replication, I recommend reading O’Reilly’s High
Performance MySQL (http://oreilly.com/catalog/9780596101718/index.html), by Baron
Schwartz et al.

Replication for performance

Another reason to leverage replication is performance. Without segmenting your data, most
database engines allow you to write against only the master, but you can read from the master
or any of the slaves. An application heavy on read operations can therefore see significant
performance benefits from spreading reads across slaves. Figure 4-10 illustrates the design of
an application using replication for performance benefits.

Application
server

Database
master

Database
slave

read operations

write
operations

FIGURE 4-10. By separating read operations to execute against slaves, your applications can scale without clustering

R E A D Y F O R T H E C L O U D 91

Download at WoweBook.Com

http://oreilly.com/catalog/9780596101718/index.html
http://oreilly.com/catalog/9780596101718/index.html
http://oreilly.com/catalog/9780596101718/index.html

The rewards of using replication for performance are huge, but there are also risks. The primary
risk is that you might accidentally execute a write operation against one of the slaves. When
you do that, replication falls apart and your master and slaves end up in inconsistent states.
Two approaches to solving this problem include:

• Clearly separating read logic from write logic in your code and centralizing the acquisition
of database connections.

• Making your slave nodes read-only.

The second one is the most foolproof, but it complicates the process of promoting a slave to
master because you must reconfigure the server out of read-only mode before promoting it.

Primary Key Management

With a web application operating behind a load balancer in which individual nodes within
the web application do not share state information with each other, the problem of cross-
database primary key generation becomes a challenge. The database engine’s auto-increment
functionality is specific to the database you are using and not very flexible; it often is guaranteed
to be unique only for a single server.

In Java Database Best Practices (O’Reilly; http://oreilly.com/catalog/9780596005221/index
.html), I describe in detail a mechanism for generating keys in memory in an application server
that are guaranteed to be unique across any number of application server nodes—even across
multiple applications written in different languages. I’ll cover that technique at a high level
here and add a new twist: the generation of random identifiers that are guaranteed to be unique
across multiple nodes.

How to generate globally unique primary keys

First, you could use standard UUIDs to serve as your primary key mechanism. They have the
benefit of an almost nonexistent chance of generating conflicts, and most programming
languages have built-in functions for generating them. I don’t use them, however, for three
reasons:

• They are 128-bit values and thus take more space and have longer lookup times than the
64-bit primary keys I prefer.

• Cleanly representing a 128-bit value in Java and some other programming languages is
painful. In fact, the best way to represent such a value is through two separate values
representing the 64 high bits and the 64 low bits, respectively.

• The possibility of collisions, although not realistic, does exist.

In order to generate identifiers at the application server level that are guaranteed to be unique
in the target database, traditionally I rely on the database to manage key generation. I
accomplish this through the creation of a sequencer table that hands out a key with a safe key

92 C H A P T E R F O U R

Download at WoweBook.Com

http://oreilly.com/catalog/9780596005221/index.html
http://oreilly.com/catalog/9780596005221/index.html

space. The application server is then free to generate keys in that key space until the key space
is exhausted.

N O T E
I prefer to use 64-bit integers for primary keys in databases. 64 bits provide a large key space

with fast lookups. The technique I talk about here works with alphanumeric key generation

as well.

The sequencer table looks like this:

CREATE TABLE sequencer (
 name VARCHAR(20) NOT NULL,
 next_key BIGINT UNSIGNED NOT NULL,
 last_update BIGINT UNSIGNED NOT NULL,
 spacing INT UNSIGNED NOT NULL;
 PRIMARY KEY (name, last_update),
 UNIQUE INDEX (name)
);

The first thing of note here is that there is nothing specific to any database in this table structure
and your keys are not tied to a particular table. If necessary, multiple tables can share the same
primary key space. Similarly, you can generate unique identifiers that have nothing to do with
a particular table in your database.

To generate a unique person_id for your person table:

1. Set up a next_key value in memory and initialize it to 0.

2. Grab the next spacing and last_update for the sequencer record with the name =
'person.person_id'.

3. Add 1 to the retrieved next_key and update the sequencer table with the name and retrieved
last_update value in the WHERE clause.

4. If no rows are updated (because another server beat you to the punch), repeat steps 2 and
3.

5. Set the next person ID to next_key.

6. Increment the next_key value by 1.

7. The next time you need a unique person ID, simply execute steps 5 and 6 as long as
next_key < next_key + spacing. Otherwise, set next_key to 0 and repeat the entire process.

Within the application server, this entire process must be locked against multithreaded access.

Support for globally unique random keys

The technique for unique key generation just described generates (more or less) sequential
identifiers. In some cases, it is important to remove reasonable predictability from identifier
generation. You therefore need to introduce some level of randomness into the equation.

R E A D Y F O R T H E C L O U D 93

Download at WoweBook.Com

W A R N I N G
This technique is not truly random, but pseudorandom. There is no source of entropy in use

for the randomly generated values, and the range of random values is sufficiently small for

a determined guesser to break.

To get a random identifier, you need to multiply your next_key value by some power of 10 and
then add a random number generated through the random number generator of your language
of choice. The larger the random number possibility, the smaller your overall key space is likely
to be. On the other hand, the smaller the random number possibility, the easier your keys will
be to guess.

The following Python example illustrates how to generate a pseudorandom unique person ID:

import thread
import random

nextKey = −1;
spacing = 100;
lock = thread.allocate_lock();

def next():
 try:
 lock.acquire(); # make sure only one thread at a time can access
 if nextKey == −1 or nextKey > spacing:
 loadKey();
 nextId = (nextKey * 100000);
 nextKey = nextKey + 1;
 finally:
 lock.release();
 rnd = random.randint(0,99999);
 nextId = nextId + rnd;
 return nextId;

You can minimize the wasting of key space by tracking the allocation of random numbers and
incrementing the nextKey value only after the random space has been sufficiently exhausted.
The further down that road you go, however, the more likely you are to encounter the
following challenges:

• The generation of unique keys will take longer.

• Your application will take up more memory.

• The randomness of your ID generation is reduced.

Database Backups

Throughout this book, I have hinted at the challenge of database backup management and its
relationship to disaster recovery. I discuss the complete disaster recovery picture in the cloud
in Chapter 6, but for now, I will deal with the specific problem of performing secure database
backups in the cloud.

94 C H A P T E R F O U R

Download at WoweBook.Com

A good database backup strategy is hard, regardless of whether or not you are in the cloud. In
the cloud, however, it is even more important to have a working database backup strategy.

Types of database backups

Most database engines provide multiple mechanisms for executing database backups. The
rationale behind having different backup strategies is to provide a trade-off between the impact
that executing a backup has on the production environment and the integrity of the data in
the backup. Typically, your database engine will offer at least these backup options (in order
of reliability):

• Database export/dump backup

• Filesystem backup

• Transaction log backup

N O T E
Your database engine almost certainly provides other options. It may be valuable to tailor

your backup processes to take advantage of those capabilities.

The most solid backup you can execute is the database export/dump. When you perform a
database export, you dump the entire schema of the database and all of its data to one or more
export files. You can then store the export files as the backup. During recovery, you can
leverage the export files to restore into a pristine install of your database engine.

To execute a database export on SQL Server, for example, use the following command:

BACKUP DATABASE website to disk = 'D:\db\website.dump'

The result is an export file you can move from one SQL Server environment to another SQL
Server environment.

The downside of the database export is that your database server must be locked against writes
in order to get a complete export that is guaranteed to be in an internally consistent state.
Unfortunately, the export of a large database takes a long time to execute. As a result, full
database exports against a production database generally are not practical.

Most databases provide the option to export parts of the database individually. For example,
you could dump just your access_log table every night. In MySQL:

$ mysqldump website access_log > /backups/db/website.dump

If the table has any dependencies on other tables in the system, however, you can end up with
inconsistent data when exporting on a table-by-table basis. Partial exports are therefore most
useful on data from a data warehouse.

Filesystem backups involve backing up all of the underlying files that support the database.
For some database engines, the database is stored in one big file. For others, the tables and their

R E A D Y F O R T H E C L O U D 95

Download at WoweBook.Com

schemas are stored across multiple files. Either way, a backup simply requires copying the
database files to backup media.

Though a filesystem backup requires you to lock the database against updates, the lock time is
typically shorter. In fact, the snapshotting capabilities of block storage devices generally reduce
the lock time to under a second, no matter how large the database is.

The following SQL will freeze MySQL and allow you to snapshot the filesystem on which the
database is stored:

FLUSH TABLES WITH READ LOCK

With the database locked, take a snapshot of the volume, and then release the lock.

The least disruptive kind of backup is the transaction log backup. As a database commits
transactions, it writes those transactions to a transaction logfile. Because the transaction log
contains only committed transactions, you can back up these transaction logfiles without
locking the database or stopping. They are also smaller files and thus back up quickly. Using
this strategy, you will create a full database backup on a nightly or weekly basis and then back
up the transaction logs on a more regular basis.

Restoring from transaction logs involves restoring from the most recent full database backup
and then applying the transaction logs. This approach is a more complex backup scheme than
the other two because you have a number of files created at different times that must be
managed together. Furthermore, restoring from transaction logs is the longest of the three
restore options.

Applying a backup strategy for the cloud

The best backup strategy for the cloud is a file-based backup solution. You lock the database
against writes, take a snapshot, and unlock it. It is elegant, quick, and reliable. The key cloud
feature that makes this approach possible is the cloud’s ability to take snapshots of your block
storage volumes. Without snapshot capabilities, this backup strategy would simply take too
long.

Your backup strategy cannot, however, end with a file-based backup. Snapshots work
beautifully within a single cloud, but they cannot be leveraged outside your cloud provider. In
other words, an Amazon EC2 elastic block volume snapshot cannot be leveraged in a cloud
deployment. To make sure your application is portable between clouds, you need to execute
full database exports regularly.

How regularly you perform your database exports depends on how much data you can use.
The underlying question you need to ask is, “If my cloud provider suddenly goes down for an
extended period of time, how much data can I afford to lose when launching in a new
environment?”

96 C H A P T E R F O U R

Download at WoweBook.Com

For a content management system, it may be OK in such an extreme situation to lose a week
of data. An e-commerce application, however, cannot really afford to lose any data—even
under such extreme circumstances.

My approach is to regularly execute full database exports against a MySQL slave, as shown in
Figure 4-11.

For the purposes of a backup, it does not matter if your database slave is a little bit behind the
master. What matters is that the slave represents the consistent state of the entire database at
a relatively reasonable point in time. You can therefore execute a very long backup against the
slave and not worry about the impact on the performance of your production environment.
Because you can execute long backups, you can also execute numerous backups bounded
mostly by your data storage appetite.

If your database backups truly take such a long time to execute that you risk having your slaves
falling very far behind the master, it makes sense to configure multiple slaves and rotate
backups among the slaves. This rotation policy will give a slave sufficient time to catch up with
the master after it has executed a backup and before it needs to perform its next backup.

Once the backup is complete, you should move it over to S3 and regularly copy those backups
out of S3 to another cloud provider or your own internal file server.

Your application architecture should now be well structured to operate not only in the Amazon
cloud, but in other clouds as well.

Application
server

Database
master

Backup
server

Database
slave

read operations

write
operations

FIGURE 4-11. Execute regular full database exports against a replication slave

R E A D Y F O R T H E C L O U D 97

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R F I V E

Security

IF THE CLOUD FORCES YOU TO COMPLETELY REEXAMINE YOUR THINKING about any particular
part of your infrastructure, it’s most likely to be security. The first question I hear from most
executives is, “Should I be concerned about losing control over where my data is stored?”
Although outsiders are particularly focused on this question, the following security
implications of the cloud are much more profound:

• Lawsuits that do not involve you become a security concern.

• Many of the laws and standards that govern your IT infrastructure were created without
virtualization in mind.

• The idea of perimeter security is largely nonsensical in the cloud.

• How you manage user credentials goes beyond standard identity management.

As with many other aspects of the cloud, security here can actually be better than in an internal
data center. The ephemeral nature of virtual instances forces you to adopt robust security
processes that many traditional hosting environments get away without using, so the move
can result in a high-security computing infrastructure.

Data Security
Physical security defines how you control physical access to the servers that support your
infrastructure. The cloud still has physical security constraints. After all, there are actual servers
running somewhere. When selecting a cloud provider, you should understand their physical
security protocols and the things you need to do on your end to secure your systems against
physical vulnerabilities.

99

Download at WoweBook.Com

Data Control

The big chasm between traditional data centers and the cloud is the location of your data on
someone else’s servers. Companies who have outsourced their data centers to a managed
services provider may have crossed part of that chasm; what cloud services add is the inability
to see or touch the servers on which their data is hosted. The meaning of this change is a
somewhat emotional matter, but it does present some real business challenges.

The main practical problem is that factors that have nothing to do with your business can
compromise your operations and your data. For example, any of the following events could
create trouble for your infrastructure:

• The cloud provider declares bankruptcy and its servers are seized or it ceases operations.

• A third party with no relationship to you (or, worse, a competitor) sues your cloud
provider and obtains a blanket subpoena granting access to all servers owned by the cloud
provider.

• Failure of your cloud provider to properly secure portions of its infrastructure—especially
in the maintenance of physical access controls—results in the compromise of your systems.

The solution is to do two things you should be doing anyway, but likely are pretty lax about:
encrypt everything and keep off-site backups.

• Encrypt sensitive data in your database and in memory. Decrypt it only in memory for the
duration of the need for the data. Encrypt your backups and encrypt all network
communications.

• Choose a second provider and use automated, regular backups (for which many open
source and commercial solutions exist) to make sure any current and historical data can
be recovered even if your cloud provider were to disappear from the face of the earth.

Let’s examine how these measures deal with each scenario, one by one.

When the cloud provider goes down

This scenario has a number of variants: bankruptcy, deciding to take the business in another
direction, or a widespread and extended outage. Whatever is going on, you risk losing access
to your production systems due to the actions of another company. You also risk that the
organization controlling your data might not protect it in accordance with the service levels to
which they may have been previously committed.

I’ll talk more in Chapter 6 about how to set up your backups and recover from this scenario.
The bottom line, however, is that regular “off-site” backups will protect you here. Having a
second cloud provider through which you can launch a replacement infrastructure is even
better.

100 C H A P T E R F I V E

Download at WoweBook.Com

When a subpoena compels your cloud provider to turn over your data

If the subpoena is directed at you, obviously you have to turn over the data to the courts,
regardless of what precautions you take, but these legal requirements apply whether your data
is in the cloud or on your own internal IT infrastructure. What we’re dealing with here is a
subpoena aimed at your cloud provider that results from court action that has nothing to do
with you.

Technically, a subpoena should be narrow enough that it does not involve you. You cannot,
however, be sure that a subpoena relating to cutting-edge technology will be properly narrow,
nor even that you’ll know the subpoena has been issued.

Encrypting your data will protect you against this scenario. The subpoena will compel your
cloud provider to turn over your data and any access it might have to that data, but your cloud
provider won’t have your access or decryption keys. To get at the data, the court will have to
come to you and subpoena you. As a result, you will end up with the same level of control
you have in your private data center.

When your cloud provider fails to adequately protect their network

When you select a cloud provider, you absolutely must understand how they treat physical,
network, and host security. Though it may sound counterintuitive, the most secure cloud
provider is one in which you never know where the physical server behind your virtual
instance is running. Chances are that if you cannot figure it out, a determined hacker who is
specifically targeting your organization is going to have a much harder time breaching the
physical environment in which your data is hosted.

N O T E
Amazon does not even disclose where their data centers are located; they simply claim that

each data center is housed in a nondescript building with a military-grade perimeter. Even

if you know that my database server is in the us-east-1a availability zone, you don’t know

where the data center(s) behind that availability zone is located, or even which of the three

East Coast availability zones us-east-1a represents.

Amazon publishes its security standards and processes at http://aws.amazon.com. Whatever
cloud provider you use, you should understand their security standards and practices, and
expect them to exceed anything you require.

Nothing guarantees that your cloud provider will, in fact, live up to the standards and processes
they profess to support. If you follow everything else I recommend in this chapter, however,
your data confidentiality will be strongly protected against even complete incompetence on
the part of your cloud provider.

S E C U R I T Y 101

Download at WoweBook.Com

http://aws.amazon.com

Encrypt Everything

In the cloud, your data is stored somewhere; you just don’t know exactly where. However,
you know some basic parameters:

• Your data lies within a virtual machine guest operating system, and you control the
mechanisms for access to that data.

• Network traffic exchanging data between instances is not visible to other virtual hosts.

• For most cloud storage services, access to data is private by default. Many, including
Amazon S3, nevertheless allow you to make that data public.

Encrypt your network traffic

No matter how lax your current security practices, you probably have network traffic
encrypted—at least for the most part. A nice feature of the Amazon cloud is that virtual servers
cannot sniff the traffic of other virtual servers. I still recommend against relying on this feature,
since it may not be true of other providers. Furthermore, Amazon might roll out a future
feature that renders this protection measure obsolete. You should therefore encrypt all network
traffic, not just web traffic.

Encrypt your backups

When you bundle your data for backups, you should be encrypting it using some kind of strong
cryptography, such as PGP. You can then safely store it in a moderately secure cloud storage
environment like Amazon S3, or even in a completely insecure environment.

Encryption eats up CPU. As a result, I recommend first copying your files in plain text over to
a temporary backup server whose job it is to perform encryption, and then uploading the
backups into your cloud storage system. Not only does the use of a backup server avoid taxing
your application server and database server CPUs, it also enables you to have a single higher-
security system holding your cloud storage access credentials rather than giving those
credentials to every system that needs to perform a backup.

Encrypt your filesystems

Each virtual server you manage will mount ephemeral storage devices (such as the /mnt
partition on Unix EC2 instances) or block storage devices. The failure to encrypt ephemeral
devices poses only a very moderate risk in an EC2 environment because the EC2 Xen system
zeros out that storage when your instance terminates. Snapshots for block storage devices,
however, sit in Amazon S3 unencrypted unless you take special action to encrypt them.

102 C H A P T E R F I V E

Download at WoweBook.Com

N O T E
Encryption in all of its forms is expensive. Nowhere is the expense more of an issue than at

the filesystem level. My default recommendation is to encrypt your filesystem, but that might

not be practical for some applications. In the end, you must balance the performance

requirements of your specific applications with its data protection requirements.

Unfortunately, those requirements are likely in conflict at some level, and you may have to

make a compromise to stay in the cloud.

The most secure approach to both scenarios is to mount ephemeral and block storage devices
using an encrypted filesystem. Managing the startup of a virtual server using encrypted
filesystems ultimately ends up being easier in the cloud and offers more security.

The challenge with encrypted filesystems on servers lies in how you manage the decryption
password. A given server needs your decryption password before it can mount any given
encrypted filesystem. The most common approach to this problem is to store the password on
an unencrypted root filesystem. Because the objective of filesystem encryption is to protect
against physical access to the disk image, the storage of the password on a separate,
unencrypted filesystem is not as problematic as it might appear on the face of it—but it’s still
problematic.

In the cloud, you don’t have to store the decryption password in the cloud. Instead, you can
provide the decryption password to your new virtual instance when you start it up. The server
can then grab the encryption key out of the server’s startup parameters and subsequently
mount any ephemeral or block devices using an encrypted filesystem.

You can add an extra layer of security into the mix by encrypting the password and storing the
key for decrypting the password in the machine image. Figure 5-1 illustrates the process of
starting up a virtual server that mounts an encrypted filesystem using an encrypted password.

Regulatory and Standards Compliance

Most problems with regulatory and standards compliance lie not with the cloud, but in the fact
that the regulations and standards written for Internet applications predate the acceptance of
virtualization technologies. In other words, chances are you can meet the spirit of any
particular specification, but you may not be able to meet the letter of the specification.

For example, if your target standard requires certain data to be stored on a different server
than other system logic, can a virtualized server ever meet that requirement? I would certainly
argue that it should be able to meet that requirement, but the interpretation as to whether it
does may be left up to lawyers, judges, or other nontechnologists who don’t appreciate the
nature of virtualization. It does not help that some regulations such as Sarbanes-Oxley (SOX)
do not really provide any specific information security requirements, and seem to exist mostly
for consultants to make a buck spreading fear among top-level management.

S E C U R I T Y 103

Download at WoweBook.Com

ALPHABET SOUP
Directive 95/46/EC

EC Directive on Data Protection. A 1995 directive for European Union nations relating to the
protection of private data and where it can be shared.

HIPAA
Health Insurance Portability and Accountability Act. A comprehensive law relating to a number
of health care issues. Of particular concern to technologists are the privacy and security
regulations around the handling of health care data.

PCI or PCI DSS
Payment Card Industry Data Security Standard. A standard that defines the information security
processes and procedures to which an organization must adhere when handling credit card
transactions.

SOX
Sarbanes-Oxley Act. Establishes legal requirements around the reporting of publicly held
companies to their shareholders.

EC2 Tools
runInstance

(with encrypted key password)

launch()

getParameters()

decrypt
(key with

password)

mount(key)

d)

EC2

)

Virtual server Block device

FIGURE 5-1. The process of starting a virtual server with encrypted filesystems

104 C H A P T E R F I V E

Download at WoweBook.Com

21CFR11
Title 21 CFR Part 11 of the Federal Code of Regulations. This standard specifies guidelines
governing electronic signatures and the management of electronic records in the
pharmaceutical and medical device manufacturing industry.

From a security perspective, you’ll encounter three kinds of issues in standards and regulations:

“How” issues
These result from a standard such as PCI or regulations such as HIPAA or SOX, which
govern how an application of a specific type should operate in order to protect certain
concerns specific to its problem domain. For example, HIPAA defines how you should
handle personally identifying health care data.

“Where” issues
These result from a directive such as Directive 95/46/EC that governs where you can store
certain information. One key impact of this particular directive is that the private data on
EU citizens may not be stored in the United States (or any other country that does not
treat private data in the same way as the EU).

“What” issues
These result from standards prescribing very specific components to your infrastructure.
For example, PCI prescribes the use of antivirus software on all servers processing credit
card data.

The bottom line today is that a cloud-deployed system may or may not be able to meet the
letter of the law for any given specification. For certain specifications, you may be able to meet
the letter of the specification by implementing a mixed architecture that includes some physical
elements and some virtual elements. Cloud infrastructures that specialize in hybrid solutions
may ultimately be a better solution. Alternatively, it may make sense to look at vendors who
provide as a service the part of your system that has specific regulatory needs. For example,
you can use an e-commerce vendor to handle the e-commerce part of your website and
manage the PCI compliance issues.

In a mixed environment, you don’t host any sensitive data in the cloud. Instead, you offload
processing onto privacy servers in a physical data center in which the hosts are entirely under
your control. For example, you might have a credit card processing server at your managed
services provider accepting requests from the cloud to save credit card numbers or charge
specific cards.

S E C U R I T Y 105

Download at WoweBook.Com

With respect to “where” data is stored, Amazon provides S3 storage in the EU. Through the
Amazon cloud and S3 data storage, you do have the ability to achieve Directive 95/46/EC
compliance with respect to storing data in the EU without building out a data center located
in the EU.

Network Security
Amazon’s cloud has no perimeter. Instead, EC2 provides security groups that define firewall-
like traffic rules governing what traffic can reach virtual servers in that group. Although I often
speak of security groups as if they were virtual network segments protected by a firewall, they
most definitely are not virtual network segments, due to the following:

• Two servers in two different Amazon EC2 availability zones can operate in the same
security group.

• A server may belong to more than one security group.

• Servers in the same security group may not be able to talk to each other at all.

• Servers in the same network segment may not share any IP characteristics—they may
even be in different class address spaces.

• No server in EC2 can see the network traffic bound for other servers (this is not necessarily
true for other cloud systems). If you try placing your virtual Linux server in promiscuous
mode, the only network traffic you will see is traffic originating from or destined for your
server.

Firewall Rules

Typically, a firewall protects the perimeter of one or more network segments. Figure 5-2
illustrates how a firewall protects the perimeter.

A main firewall protects the outermost perimeter, allowing in only HTTP, HTTPS, and
(sometimes) FTP* traffic. Within that network segment are border systems, such as load
balancers, that route traffic into a DMZ protected by another firewall. Finally, within the DMZ
are application servers that make database and other requests across a third firewall into
protected systems on a highly sensitive internal network.

This structure requires you to move through several layers—or perimeters—of network
protection in the form of firewalls to gain access to increasingly sensitive data. The perimeter
architecture’s chief advantage is that a poorly structured firewall rule on the inner perimeter
does not accidentally expose the internal network to the Internet unless the DMZ is already
compromised. In addition, outer layer services tend to be more hardened against Internet

* Don’t let FTP traffic in your network. FTP is an insecure protocol with a long history of vulnerabilities
in the various FTP server implementations. Use SCP.

106 C H A P T E R F I V E

Download at WoweBook.Com

vulnerabilities, whereas interior services tend to be less Internet-aware. The weakness of this
infrastructure is that a compromise of any individual server inside any given segment provides
full access to all servers in that network segment.

Figure 5-3 provides a visual look at how the concept of a firewall rule in the Amazon cloud is
different from that in a traditional data center.

Each virtual server occupies the same level in the network, with its traffic managed through a
security group definition. There are no network segments, and there is no perimeter.
Membership in the same group does not provide any privileged access to other servers in that
security group, unless you define rules that provide privileged access. Finally, an individual
server can be a member of multiple security groups. The rules for a given server are simply the
union of the rules assigned to all groups of which the server is a member.

You can set up security groups to help you mimic traditional perimeter security. For example,
you can create the following:

• A border security group that listens to all traffic on ports 80 and 443

• A DMZ security group that listens to traffic from the border group on ports 80 and 443

• An internal security group that listens to traffic on port 3306 from the DMZ security group

Internal
databases

Application
servers
(DMZ)

Load
balancers

FIGURE 5-2. Firewalls are the primary tool in perimeter security

S E C U R I T Y 107

Download at WoweBook.Com

W A R N I N G
Amazon EC2 security does not currently enable you to limit access by port when defining

group-to-group access. It may appear in the future. You can, however, mimic this behavior

by defining source IP-based rules for each server in the source group.

As with traditional perimeter security, access to the servers in your internal security group
requires first compromising the outer group, then the DMZ, and then finally one of the internal
servers. Unlike traditional perimeter security, there is the possibility for you to accidentally
grant global access into the internal zone and thus expose the zone. However, an intruder who
compromises a single server within any given zone gains no ability to reach any other server
in that zone except through leveraging the original exploit. In other words, access to the zone
itself does not necessarily provide access to the other servers in that zone.

The Amazon approach also enables functionality that used to be out of the question in a
traditional infrastructure. For example, you can more easily provide for direct SSH access into
each virtual server in your cloud infrastructure from your corporate IT network without relying
on a VPN. You still have the security advantages of a traditional perimeter approach when it
comes to the open Internet, but you can get quick access to your servers to manage them from
critical locations.

INTERNET

Xen

Load
balancer

Group rules

Database
server

Group rules

Application
server

Group rules

FIGURE 5-3. There are no network segments or perimeters in the cloud

108 C H A P T E R F I V E

Download at WoweBook.Com

Two other advantages of this security architecture are the following:

• Because you control your firewall rules remotely, an intruder does not have a single target
to attack, as he does with a physical firewall.

• You don’t have the opportunity to accidentally destroy your network rules and thus
permanently remove everyone’s access to a given network segment.

I recommend the approach of mimicking traditional perimeter security because it is a well-
understood approach to managing network traffic and it works. If you take that approach, it’s
important to understand that you are creating physical counterparts to the network segments
of a traditional setup. You don’t really have the layers of network security that come with a
traditional configuration.

A few best practices for your network security include:

Run only one network service (plus necessary administrative services) on each virtual server
Every network service on a system presents an attack vector. When you stick multiple
services on a server, you create multiple attack vectors for accessing the data on that server
or leveraging that server’s network access rights.

Do not open up direct access to your most sensitive data
If getting access to your customer database requires compromising a load balancer, an
application server, and a database server (and you’re running only one service per server),
an attacker needs to exploit three different attack vectors before he can get to that data.

Open only the ports absolutely necessary to support a server’s service and nothing more
Of course your server should be hardened so it is running only the one service you intend
to run on it. But sometimes you inadvertently end up with services running that you did
not intend, or there is a nonroot exploit in the service you are running that enables an
attacker to start up another service with a root exploit. By blocking access to everything
except your intended service, you prevent these kinds of exploits.

Limit access to your services to clients who need to access them
Your load balancers naturally need to open the web ports 80 and 443 to all traffic. Those
two protocols and that particular server, however, are the only situations that require open
access. For every other service, traffic should be limited to specific source addresses or
security groups.

Even if you are not doing load balancing, use a reverse proxy
A reverse proxy is a web server such as Apache that proxies traffic from a client to a server.
By using a proxy server, you make it much harder to attack your infrastructure. First of
all, Apache and IIS are much more battle-hardened than any of the application server
options you will be using. As a result, an exploit is both less likely and almost certain to
be patched more quickly. Second, an exploit of a proxy provides an attacker with access
to nothing at all. They must subsequently find an additional vulnerability in your
application server itself.

S E C U R I T Y 109

Download at WoweBook.Com

Use the dynamic nature of the cloud to automate your security embarrassments
Admit it. You have opened up ports in your firewall to accomplish some critical business
task even though you know better. Perhaps you opened an FTP port to a web server
because some client absolutely had to use anonymous FTP for their batch file uploads.
Instead of leaving that port open 24/7, you could open the port only for the batch window
and then shut it down. You could even bring up a temporary server to act as the FTP server
for the batch window, process the file, and then shut down the server.

The recommendations in the preceding list are not novel; they are standard security
precautions. The cloud makes them relatively easy to implement, and they are important to
your security there.

Network Intrusion Detection

Perimeter security often involves network intrusion detection systems (NIDS), such as Snort,
which monitor local traffic for anything that looks irregular. Examples of irregular traffic
include:

• Port scans

• Denial-of-service attacks

• Known vulnerability exploit attempts

You perform network intrusion detection either by routing all traffic through a system that
analyzes it or by doing passive monitoring from one box on local traffic on your network. In
the Amazon cloud, only the former is possible; the latter is meaningless since an EC2 instance
can see only its own traffic.

The purpose of a network intrusion detection system

Network intrusion detection exists to alert you of attacks before they happen and, in some
cases, foil attacks as they happen. Because of the way the Amazon cloud is set up, however,
many of the things you look for in a NIDS are meaningless. For example, a NIDS typically alerts
you to port scans as evidence of a precursor to a potential future attack. In the Amazon cloud,
however, you are not likely to notice a port scan because your NIDS will be aware only of
requests coming in on the ports allowed by your security group rules. All other traffic will be
invisible to the NIDS and thus are not likely to be perceived as a port scan.

PORT SCANS AND THE AMAZON CLOUD
When an attacker is looking for vulnerabilities against a particular target, one of the first things they
do is execute a port scan against a known server and then examine servers with nearby IP addresses.
This approach does not provide terribly useful data when executed against the cloud for a number
of reasons:

110 C H A P T E R F I V E

Download at WoweBook.Com

• Nodes with proximate IP addresses are almost always unrelated. As a result, you cannot learn
anything about the network architecture of a particular organization by executing a port scan.

• Amazon security groups deny all incoming traffic by default, and requests for ports that have
not been opened simply do not respond. As a result, very few ports for any particular server
will actually be open. Furthermore, scanning across all ports is a very slow process because
each closed port times out instead of actively denying the traffic.

• Amazon has its own intrusion detection systems in place and does not allow its customers to
execute port scans against their own servers. As a result, an active port scan is likely to be
blocked before any real information can be gathered.

As with port scans, Amazon network intrusion systems are actively looking for
denial-of-service attacks and would likely identify any such attempts long before your
own intrusion detection software.

One place in which an additional network intrusion detection system is useful is its ability to
detect malicious payloads coming into your network. When the NIDS sees traffic that contains
malicious payload, it can either block the traffic or send out an alert that enables you to react.
Even if the payload is delivered and compromises a server, you should be able to respond
quickly and contain the damage.

W A R N I N G
Don’t execute your own port scans against your cloud servers. Typically, when you harden

your network infrastructure, you will use a tool such as NESSUS to look for vulnerabilities

in your network. These tools execute port scans as part of their testing. Amazon and some

other cloud providers specifically prohibit this kind of activity, and you can end up violating

your terms of service.

Implementing network intrusion detection in the cloud

As I mentioned in the previous section, you simply cannot implement a network intrusion
detection system in the Amazon cloud (or any other cloud that does not expose LAN traffic)
that passively listens to local network traffic. Instead, you must run the NIDS on your load
balancer or on each server in your infrastructure. There are advantages and disadvantages to
each approach, but I am not generally a fan of NIDS in the cloud unless required by a standard
or regulation.

The simplest approach is to have a dedicated NIDS server in front of the network as a whole
that watches all incoming traffic and acts accordingly. Figure 5-4 illustrates this architecture.

Because the only software running on the load balancer is the NIDS software and Apache, it
maintains a very low attack profile. Compromising the NIDS server requires a vulnerability in

S E C U R I T Y 111

Download at WoweBook.Com

the NIDS software or Apache—assuming the rest of the system is properly hardened and no
actual services are listening to any other ports open to the Web as a whole.

The load balancer approach creates a single point of failure for your network intrusion
detection system because, in general, the load balancer is the most exposed component in your
infrastructure. By finding a way to compromise your load balancer, the intruder not only takes
control of the load balancer, but also has the ability to silence detection of further attacks against
your cloud environment.

You can alternately implement intrusion detection on a server behind the load balancer that
acts as an intermediate point between the load balancer and the rest of the system. This design
is generally superior to the previously described design, except that it leaves the load balancer
exposed (only traffic passed by the load balancer is examined) and reduces the overall
availability of the system.

Another approach is to implement network intrusion detection on each server in the network.
This approach creates a very slight increase in the attack profile of the system as a whole
because you end up with common software on all servers. A vulnerability in your NIDS would
result in a vulnerability on each server in your cloud architecture. On a positive note, you make
it much more difficult for an intruder to hide his footprints.

As I mentioned earlier, I am not a huge fan of network intrusion detection in the Amazon
cloud.† Unlike a traditional infrastructure, there just is no meaningful way for a NIDS to serve
its purpose. You simply cannot devise any NIDS architecture that will give your NIDS visibility
to all traffic attempting to reach your instances. The best you can do is create an implementation
in which the NIDS is deployed on each server in your infrastructure with visibility to the traffic
that Amazon allows into the security group in which the instance is deployed. You would see

Load balancer

INTERNET NIDS Load
balancer

Application server

Application

Application server

Application

FIGURE 5-4. A network intrusion detection system listening on a load balancer

† Let me strongly repeat that qualification: in the Amazon cloud. Your data center and most other clouds
will benefit from a network intrusion detection system.

112 C H A P T E R F I V E

Download at WoweBook.Com

minimally valid proactive alerting, and the main benefit would be protection against malicious
payloads. But, if you are encrypting all your traffic, even that benefit is minimal. On the other
hand, the presence of a NIDS will greatly reduce the performance of those servers and create
a single attack vector for all hosts in your infrastructure.

Host Security
Host security describes how your server is set up for the following tasks:

• Preventing attacks.

• Minimizing the impact of a successful attack on the overall system.

• Responding to attacks when they occur.

It always helps to have software with no security holes. Good luck with that! In the real world,
the best approach for preventing attacks is to assume your software has security holes. As I
noted earlier in this chapter, each service you run on a host presents a distinct attack vector
into the host. The more attack vectors, the more likely an attacker will find one with a security
exploit. You must therefore minimize the different kinds of software running on a server.

Given the assumption that your services are vulnerable, your most significant tool in
preventing attackers from exploiting a vulnerability once it becomes known is the rapid rollout
of security patches. Here’s where the dynamic nature of the cloud really alters what you can
do from a security perspective. In a traditional data center, rolling out security patches across
an entire infrastructure is time-consuming and risky. In the cloud, rolling out a patch across
the infrastructure takes three simple steps:

1. Patch your AMI with the new security fixes.

2. Test the results.

3. Relaunch your virtual servers.

Here a tool such as enStratus or RightScale for managing your infrastructure becomes
absolutely critical. If you have to manually perform these three steps, the cloud can become
a horrible maintenance headache. Management tools, however, can automatically roll out
the security fixes and minimize human involvement, downtime, and the potential for
human-error-induced downtime.

System Hardening

Prevention begins when you set up your machine image. As you get going, you will experiment
with different configurations and constantly rebuild images. Once you have found a
configuration that works for a particular service profile, you should harden the system before
creating your image.

S E C U R I T Y 113

Download at WoweBook.Com

Server hardening is the process of disabling or removing unnecessary services and eliminating
unimportant user accounts. Tools such as Bastille Linux can make the process of hardening
your machine images much more efficient. Once you install Bastille Linux, you execute the
interactive scripts that ask you questions about your server. It then proceeds to disable services
and accounts. In particular, it makes sure that your hardened system meets the following
criteria:

• No network services are running except those necessary to support the server’s function.

• No user accounts are enabled on the server except those necessary to support the services
running on the server or to provide access for users who need it.

• All configuration files for common server software are configured to the most secure
settings.

• All necessary services run under a nonprivileged role user account (e.g., run MySQL as
the mysql user, not root).

• When possible, run services in a restricted filesystem, such as a chroot jail.

Before bundling your machine image, you should remove all interactive user accounts and
passwords stored in configuration files. Although the machine image will be stored in an
encrypted format, Amazon holds the encryption keys and thus can be compelled to provide a
third party with access through a court subpoena.

Antivirus Protection

Some regulations and standards require the implementation of an antivirus (AV) system on
your servers. It’s definitely a controversial issue, since an AV system with an exploit is itself an
attack vector and, on some operating systems, the percentage of AV exploits to known viruses
is relatively high.

Personally, I have mixed feelings about AV systems. They are definitely necessary in some
circumstances, but a risk in others. For example, if you are accepting the upload of photos or
other files that could be used to deliver viruses that are then served to the public, you have an
obligation to use some kind of antivirus software in order to protect your site from becoming
a mechanism for spreading the virus.

Unfortunately, not all AV systems are created equally. Some are written better than others,
and some protect you much better than others. Finally, some servers simply don’t have an
operational profile that makes viruses, worms, and trojans viable attack vectors. I am therefore
bothered by standards, regulations, and requirements that demand blanket AV coverage.

When looking at the AV question, you first should understand what your requirements are.
If you are required to implement AV, then you should definitely do it. Look for two critical
features in your AV software:

114 C H A P T E R F I V E

Download at WoweBook.Com

• How wide is the protection it provides? In other words, what percentage of known exploits
does it cover?‡

• What is the median delta between the time when a virus is released into the wild and the
time your AV product of choice provides protection against it?

Once you have selected an AV vendor and implemented it on your servers, you absolutely
must keep your signatures up to date. You are probably better off with no AV system than one
with outdated versions or protections.

Host Intrusion Detection

Whereas a network intrusion detection system monitors network traffic for suspicious activity,
a host intrusion detection system (HIDS) such as OSSEC monitors the state of your server for
anything unusual. An HIDS is in some ways similar to an AV system, except it examines the
system for all signs of compromise and notifies you when any core operating system or service
file changes.

W A R N I N G
I may be ambivalent about NIDS and AV in the cloud, but I am a strong proponent of HIDS

in the cloud. You should not deploy servers in the cloud without an HIDS.

In my Linux deployments, I use OSSEC (http://www.ossec.net) for host-based intrusion
detection. OSSEC has two configuration profiles:

• Standalone, in which each server scans itself and sends you alerts.

• Centralized, in which you create a centralized HIDS server to which each of the other
servers sends reports.

In the cloud, you should always opt for the centralized configuration. It centralizes your rules
and analysis so that it is much easier to keep your HIDS infrastructure up to date. Furthermore,
it enables you to craft a higher security profile for your HIDS processing than the individual
services might allow for. Figure 5-5 illustrates a cloud network using centralized HIDS.

As with an AV solution, you must keep your HIDS servers up to date constantly, but you do
not need to update your individual servers as often.

The downside of an HIDS is that it requires CPU power to operate, and thus can eat up resources
on your server. By going with a centralized deployment model, however, you can push a lot
of that processing onto a specialized intrusion detection server.

‡ So many viruses are created these days that most AV companies cannot possibly develop protection
against all of them. They knowingly punt on protecting you against published viruses.

S E C U R I T Y 115

Download at WoweBook.Com

http://www.ossec.net

Data Segmentation

In addition to assuming that the services on your servers have security exploits, you should
further assume that eventually one of them will be compromised. Obviously, you never want
any server to be compromised. The best infrastructure, however, is tolerant of—in fact, it
assumes—the compromise of any individual node. This tolerance is not meant to encourage
lax security for individual servers, but is meant to minimize the impact of the compromise of
specific nodes. Making this assumption provides you with a system that has the following
advantages:

• Access to your most sensitive data requires a full system breach.

• The compromise of the entire system requires multiple attack vectors with potentially
different skill sets.

• The downtime associated with the compromise of an individual node is negligible or
nonexistent.

The segmentation of data based on differing levels of sensitivity is your first tool in minimizing
the impact of a successful attack. We examined a form of data segmentation in Chapter 4 when
we separated credit card data from customer data. In that example, an attacker who accesses
your customer database has found some important information, but that attacker still lacks
access to the credit card data. To be able to access credit card data, decrypt it, and associate it
with a specific individual, the attacker must compromise both the e-commerce application
server and the credit card processor.

Application server

OSSEC

Load balancer

OSSEC

Application
IDS server

OSSEC

Apache

FIGURE 5-5. A HIDS infrastructure reporting to a centralized server

116 C H A P T E R F I V E

Download at WoweBook.Com

Here again the approach of one server/one service helps out. Because each type of server in
the chain offers a different attack vector, an attacker will need to exploit multiple attack vectors
to compromise the system as a whole.

Credential Management

Your machine images OSSEC profileshould have no user accounts embedded in them. In fact,
you should never allow password-based shell access to your virtual servers. The most secure
approach to providing access to virtual servers is the dynamic delivery of public SSH keys to
target servers. In other words, if someone needs access to a server, you should provide her
credentials to the server when it starts up or via an administrative interface instead of
embedding that information in the machine image.

N O T E
The best credential management system provides remote access to the server only for users

who absolutely have an operational need to access the server and only for the time period

for which they need that access. I strongly recommend taking advantage of the dynamic

nature of the cloud to eliminate the need to keep access credentials for people with little or

no current need to access your server.

Of course, it is perfectly secure to embed public SSH keys in a machine image, and it makes
life a lot easier. Unfortunately, it makes it harder to build the general-purpose machine images
I described in Chapter 4. Specifically, if you embed the public key credentials in a machine
image, the user behind those credentials will have access to every machine built on that image.
To remove her access or add access for another individual, you subsequently have to build a
new machine image reflecting the changed dynamics.

Therefore, you should keep things simple and maintainable by passing in user credentials as
part of the process of launching your virtual server. At boot time, the virtual server has access
to all of the parameters you pass in and can thus set up user accounts for each user you specify.
It’s simple because it requires no tools other than those that Amazon already provides. On the
other hand, adding and removing access after the system boots up becomes a manual task.

Another approach is to use existing cloud infrastructure management tools or build your own
that enable you to store user credentials outside the cloud and dynamically add and remove
users to your cloud servers at runtime. This approach, however, requires an administrative
service running on each host and thus represents an extra attack vector against your server.

S E C U R I T Y 117

Download at WoweBook.Com

Compromise Response
Because you should be running an intrusion detection system, you should know very quickly
if and when an actual compromise occurs. If you respond rapidly, you can take advantage of
the cloud to eliminate exploit-based downtime in your infrastructure.

When you detect a compromise on a physical server, the standard operating procedure is a
painful, manual process:

1. Remove intruder access to the system, typically by cutting the server off from the rest of
the network.

2. Identify the attack vector. You don’t want to simply shut down and start over, because
the vulnerability in question could be on any number of servers. Furthermore, the
intruder very likely left a rootkit or other software to permit a renewed intrusion after you
remove the original problem that let him in. It is therefore critical to identify how the
intruder compromised the system, if that compromise gave him the ability to compromise
other systems, and if other systems have the same vulnerability.

3. Wipe the server clean and start over. This step includes patching the original vulnerability
and rebuilding the system from the most recent uncompromised backup.

4. Launch the server back into service and repeat the process for any server that has the same
attack vector.

This process is very labor intensive and can take a long time. In the cloud, the response is much
simpler.

First of all, the forensic element can happen after you are operating. You simply copy the root
filesystem over to one of your block volumes, snapshot your block volumes, shut the server
down, and bring up a replacement.

Once the replacement is up (still certainly suffering from the underlying vulnerability, but at
least currently uncompromised), you can bring up a server in a dedicated security group that
mounts the compromised volumes. Because this server has a different root filesystem and no
services running on it, it is not compromised. You nevertheless have full access to the
underlying compromised data, so you can identify the attack vector.

With the attack vector identified, you can apply patches to the machine images. Once the
machine images are patched, simply relaunch all your instances. The end result is a quicker
response to a vulnerability with little (if any) downtime.

118 C H A P T E R F I V E

Download at WoweBook.Com

C H A P T E R S I X

Disaster Recovery

HOW GOOD IS YOUR DISASTER RECOVERY PLAN? It’s fully documented and you regularly test
it by running disaster recovery drills, right?

So far in this book, we have talked about what happens in the event of routine, expected
failures. Disaster recovery is the practice of making a system capable of surviving unexpected
or extraordinary failures. A disaster recovery plan, for example, will help your IT systems
survive a fire in your data center that destroys all of the servers in that data center and the
systems they support.

Every organization should have a documented disaster recovery process and should test that
process at least twice each year. In reality, even well-disciplined companies tend to fall short
in their disaster recovery planning. Too many small- and medium-size businesses would simply
go out of business in the case of the data center fire scenario I just outlined.

One of the things I personally love about virtualization is the way it lets you automate disaster
recovery. Recovery from trivial failures and disaster recovery in the cloud become largely
indistinguishable operations. As a result, if your entire cloud infrastructure falls apart, you
should have the capabilities in place to restore it on internal servers, at a managed hosting
services provider, or at another cloud provider in minutes or hours.

Disaster Recovery Planning
Disaster recovery deals with catastrophic failures that are extremely unlikely to occur during
the lifetime of a system. If they are reasonably expected failures, they fall under the auspices

119

Download at WoweBook.Com

of traditional availability planning. Although each single disaster is unexpected over the
lifetime of a system, the possibility of some disaster occurring over time is reasonably nonzero.

Through disaster recovery planning, you identify an acceptable recovery state and develop
processes and procedures to achieve the recovery state in the event of a disaster. By “acceptable
recovery state,” I specifically mean how much data you are willing to lose in the event of a
disaster.

Defining a disaster recovery plan involves two key metrics:

Recovery Point Objective (RPO)
The recovery point objective identifies how much data you are willing to lose in the event
of a disaster. This value is typically specified in a number of hours or days of data. For
example, if you determine that it is OK to lose 24 hours of data, you must make sure that
the backups you’ll use for your disaster recovery plan are never more than 24 hours old.

Recovery Time Objective (RTO)
The recovery time objective identifies how much downtime is acceptable in the event of
a disaster. If your RTO is 24 hours, you are saying that up to 24 hours may elapse between
the point when your system first goes offline and the point at which you are fully
operational again.

In addition, the team putting together a disaster recovery plan should define the criteria that
would trigger invocation of the plan. In general, invocation of any plan that results in accepting
a loss of data should involve the heads of the business organization—even if the execution of
the plan is automated, as I am promoting in this chapter.

Everyone would love a disaster recovery scenario in which no downtime and no loss of data
occur, no matter what the disaster. The nature of a disaster, however, generally requires you
to accept some level of loss; anything else will come with a significant price tag. In a citywide
disaster like Hurricane Katrina, the cost of surviving with zero downtime and zero data loss
could have been having multiple data centers in different geographic locations that were
constantly synchronized. In other words, you would need two distinct data centers from
different infrastructure providers with dedicated, high-bandwidth connections between the
two.

Accomplishing that level of redundancy is expensive. It would also come with a nontrivial
performance penalty. The cold reality for most businesses is likely that the cost of losing 24
hours of data is less than the cost of maintaining a zero downtime/zero loss of data
infrastructure.

Determining an appropriate RPO and RTO is ultimately a financial calculation: at what point
does the cost of data loss and downtime exceed the cost of a backup strategy that will prevent
that level of data loss and downtime? The right answer is radically different for different
businesses. If you are in a senior IT management role in an organization, you should definitely
know the right answer for your business.

120 C H A P T E R S I X

Download at WoweBook.Com

The final element of disaster recovery planning is understanding the catastrophic scenario.
There’s ultimately some level of disaster your IT systems will not survive no matter how much
planning and spending you do. A good disaster recovery plan can describe that scenario so that
all stakeholders can understand and accept the risk.

The Recovery Point Objective

The easiest place to start is your RPO. The Armageddon scenario results in total loss of all system
data and the binaries of all applications required to run the system. Your RPO is somewhere
between the application state when you first deployed it and the state at the time of the disaster.
You may even define multiple disaster levels with different RPOs.*

Just about any software system should be able to attain an RPO between 24 hours for a simple
disaster to one week for a significant disaster without incurring absurd costs. Of course, losing
24 hours of banking transactions would never be acceptable, much less one week.

Your RPO is typically governed by the way in which you save and back up data:

• Weekly off-site backups will survive the loss of your data center with a week of data loss.
Daily off-site backups are even better.

• Daily on-site backups will survive the loss of your production environment with a day of
data loss plus replicating transactions during the recovery period after the loss of the
system. Hourly on-site backups are even better.

• A NAS/SAN will survive the loss of any individual server, except for instances of data
corruption with no data loss.

• A clustered database will survive the loss of any individual data storage device or database
node with no data loss.

• A clustered database across multiple data centers will survive the loss of any individual
data center with no data loss.

Later in this chapter, we talk about how the cloud changes your options and makes lower RPOs
possible.

The Recovery Time Objective

Having up-to-the-second off-site backups does you no good if you have no environment to
which you can restore them in the event of failure. The ability to assemble a replacement
infrastructure for your disasters—including the data restore time—governs the RTO.

* You might, for example, define a level 1 disaster as involving the loss of a single data center and a level
2 disaster as involving the loss of multiple data centers.

D I S A S T E R R E C O V E R Y 121

Download at WoweBook.Com

What would happen if your managed services provider closed its doors tomorrow? If you have
a number of dedicated servers, it can be days or weeks before you are operational again unless
you have an agreement in place for a replacement infrastructure.†

In a traditional infrastructure, a rapid RTO is very expensive. As I already noted, you would
have to have an agreement in place with another managed services provider to provide either
a backup infrastructure or an SLA for setting up a replacement infrastructure in the event your
provider goes out of business. Depending on the nature of that agreement, it can nearly double
the costs of your IT infrastructure.

The cloud—even over virtualized data centers—alters the way you look at your RTO. We’ll
dive into the reasons why later in the chapter.

Disasters in the Cloud
Assuming unlimited budget and capabilities, I focus on three key things in disaster recovery
planning:

1. Backups and data retention

2. Geographic redundancy

3. Organizational redundancy

If I can take care of those three items, it’s nearly certain I can meet most RPO and RTO needs.
But I have never been in a situation in which I had an unlimited budget and capabilities, so I
have always had to compromise. As a result, the order of the three items matters. In addition,
if your hosting provider is a less-proven organization, organizational redundancy may be more
important than geographic redundancy.

Fortunately, the structure of the Amazon cloud makes it very easy to take care of the first and
second items. In addition, cloud computing in general makes the third item much easier.

N O T E
The section contains a lot of content that is specific to the Amazon cloud. Most clouds

currently have or are developing concepts similar to EC2 block storage devices and snapshots.

For such clouds, many of these concepts apply. Issues relating to geographic redundancy,

however, are specific to your cloud provider, so very little that I say on that subject applies

to other cloud providers.

† This scenario also illustrates that simply having off-site backups is not enough. Those backups must reside
outside the control of your managed services provider, or you risk losing access to them in the event of
that provider going bankrupt.

122 C H A P T E R S I X

Download at WoweBook.Com

Backup Management

In Chapter 4, I looked at the technical details of how to manage AMIs and execute backups in
a cloud environment. Now it’s time to take a step back from the technical details and examine
the kinds of data you are planning to back up and how it all fits into your overall disaster
recovery plan.

Your ability to recover from a disaster is limited by the quality and frequency of your backups.
In a traditional IT infrastructure, companies often make full weekly backups to tape with
nightly differentials and then ship the weekly backups off-site. You can do much better in the
cloud, and do it much more cheaply, through a layered backup strategy.

BACKUPS, BUSINESS CONTINUITY, AND AWS
In this section, I cover a number of technologies that Amazon Web Services provide to help you
manage backups effectively. If you are using a different cloud, they likely have some similar tools
as well as some that are completely different. A critical part of any backup strategy, however, is the
concept of off-site backups. Whatever your backup strategy, you must not only have a mechanism
for moving all data critical for achieving your Recovery Point Objectives out of the cloud, but you
must also store that data in a portable format so you can recover into an environment that might be
radically different from your current cloud provider.

Table 6-1 illustrates the different kinds of data that web applications typically manage.

TABLE 6-1. Backup requirements by data type

Kind of data Description

Fixed data Fixed data, such as your operating system and common utilities, belong in your AMI. In the cloud,

you don’t back up your AMI, because it has no value beyond the cloud.a

Transient data File caches and other data that can be lost completely without impacting the integrity of the system.

Because your application state is not dependent on this data, don’t back it up.

Configuration data Runtimeconfiguration data necessary to make the system operate properly in a specific context.

This data is not transient, since it must survive machine restarts. On the other hand, it should be

easily reconfigured from a clean application install. This data should be backed up semi-regularly.

Persistent data Your application state, including critical customer data such as purchase orders. It changes

constantly and a database engine is the best tool for managing it. Your database engine should

store its state to a block device, and you should be performing constant backups. Clustering

and/or replication are also critical tools in managing the database.

a Keep in mind that even if Amazon S3 failed completely and lost your AMIs, as long as EC2 is available and you have EC2 instances
running based on the lost AMI, you will be able to quickly rebuild the lost AMI. On the other hand, if EC2 goes down, S3 goes down,
and all S3 data is lost completely, you’ll have to recover into a different cloud that doesn’t recognize your AMI anyway!

D I S A S T E R R E C O V E R Y 123

Download at WoweBook.Com

In disaster recovery, persistent data is generally the data of greatest concern. We can always
rebuild the operating system, install all the software, and reconfigure it, but we have no way
of manually rebuilding the persistent data.

Fixed data strategy

If you are fixated on the idea of backing up your machine images, you can download the images
out of S3 and store them outside of the Amazon cloud. If S3 were to go down and incur data
loss or corruption that had an impact on your AMIs, you would be able to upload the images
from your off-site backups and reregister them. It’s not a bad idea and it is not a lot of trouble,
but the utility is limited given the uniqueness of the failure scenario that would make you turn
to those backups.

Configuration data strategy

A good backup strategy for configuration information comprises two levels. The first level can
be either a regular filesystem dump to your cloud storage or a filesystem snapshot. For most
applications, you can back up your configuration data once a day or even once a week and be
fine. You should, however, think back to your Recovery Point Objective. If your configuration
data changes twice a day and you have a two-hour RPO, you will need to back up your
configuration data twice a day. If configuration data changes irregularly, it may be necessary
to make hourly backups or specifically tie your backups to changes in application configuration.

An alternate approach is to check your application configuration into a source code repository
outside of the cloud and leverage that repository for recovery from even minor losses.

Whether you perform filesystem snapshots or simply zip up the filesystem, that data will
hibernate inside S3. Snapshots tend to be the most efficient and least intrusive mechanism for
performing backups, but they are also the least portable. You don’t have direct access to the
EC2 snapshots, and even if you did, they would not be usable outside of the Amazon cloud.
At some point, you do need to get that data out of the cloud so that you have off-site backups
in a portable format. Here’s what I recommend:

• Create regular—at a minimum, daily—snapshots of your configuration data.

• Create semi-regular—at least less than your RPO—filesystem archives in the form of ZIP
or TAR files and move those archives into Amazon S3.

• On a semi-regular basis—again, at least less than your RPO—copy your filesystem archives
out of the Amazon cloud into another cloud or physical hosting facility.

Let’s say I had a one-day RPO with an application housing less than 10 GB of data whose
configuration data could change on a whim:

• I would make hourly snapshots of the filesystem with the configuration data and archive
the whole thing in a portable format to S3 at least once a day.

124 C H A P T E R S I X

Download at WoweBook.Com

• I would retain a week’s worth of full backups in S3 in case of a corruption issue during
backup. In addition, I would copy each daily backup out of S3 to another cloud or my
internal file servers at some point right after it is made.

• Finally, I would keep a week’s worth of backups off site for the last week along with one
backup a week for the prior month and one backup a month for the prior year.

Depending on the amount of data in question and the data retention issues/requirements, I
might do more or less in the archiving of old backups.

Different RPOs and application behaviors mandate different strategies. I have to emphasize
again: you must absolutely understand your RPO in order to create a proper backup strategy.
Given the example strategy I just outlined, I will be able to create a functional replication of
my application in any data center in the world and lose at most 24 hours of data, except in the
event of complete data corruption of backups or simultaneous loss of all of Amazon and
wherever my off-site backups are stored.

Persistent data strategy (aka database backups)

I’ve already recommended using a relational database to store customer information and other
persistent data. After all, the purpose of a relational database is to maintain the consistency of
complex transactional data. The challenge of setting up database backups is doing them
regularly in a manner that does not impact operations while retaining database integrity.

MySQL, like all database engines, provides several convenient tools for backups, but you must
use them carefully to avoid data corruption. The techniques are fairly well-documented in the
database literature, but they’re important enough for me to summarize them here as well as
apply them to an Amazon EC2 environment.

If you aren’t familiar with the way databases work, you might be wondering, “Why is that so
hard? Why don’t I do a snapshot or make an archive like I did with the configuration data?”
With the configuration data, it is highly unlikely you will be making a backup in between the
writing of two different files that must remain consistent or in the middle of writing out a file
to the filesystem. With database storage, it is a near certainty that every time you try to copy
those files, the database will be in the middle of doing something with them. As a result, you
need to get clever with your database backup strategy.

The first line of defense is either multimaster replication or clustering. A multimaster database
is one in which two master servers execute write transactions independently and replicate the
transactions to the other master. A clustered database environment contains multiple servers
that act as a single logical server. Under both scenarios, when one goes down, the system
remains operational and consistent.

Instead, you can perform master-slave replication. Master-slave replication involves setting up
a master server that handles your write operations and replicating transactions over to a slave
server. Each time something happens on the master, it replicates to the slave.

D I S A S T E R R E C O V E R Y 125

Download at WoweBook.Com

Replication in itself is not a “first line of defense,” since replication is not atomic with respect
to the transactions that take place on the master. In other words, a master can crash after a
transaction has completed but before it has had time to replicate to the slave. To get around
this problem, I generally do the following:

• Set up a master with its data files stored on a block storage device.

• Set up a replication slave, storing its data files on a block storage device.

• Take regular snapshots of the master block storage device based on my RPO.

• Create regular database dumps of the slave database and store them in S3.

• Copy the database dumps on a semi-regular basis from S3 to a location outside the Amazon
cloud.

N O T E
When dumping your MySQL database state to offline media, I strongly encourage doing so

off a replication slave that is not supporting read-only queries for the live application. By

leveraging the slave, you minimize the impact of performing backups on the production

system.

Amazon’s Elastic Block Storage (EBS) offering has not been around long enough to provide a
good feel for how likely you are to see database corruption in the event of your MySQL server
failing. I have taken the position, however, that corruption is extremely likely—as it is with
many filesystems—and have adjusted my backup strategy accordingly. I could be proven wrong
on this issue, but for the moment, I prefer to play it safe.

Actually taking snapshots or creating database dumps for some database engines is actually
very tricky in a runtime environment, especially if you want to do it hourly or even more
frequently. The challenge in creating your backups for these database engines is the need to
stop processing all transactions while the backup is taking place. To complicate the situation,
database dumps can take a long time to complete. As a result, your applications will grind to
a halt while you make any database dumps.

Snapshots are available in most cloud environments and provide an important approach for
maintaining database integrity without completely shutting down application processing—
even with large data sets in databases such as MySQL.

You need to freeze the database only for an instant to create your snapshot. The process follows
these steps:

1. Lock the database.

2. Sync the filesystem (this procedure is filesystem-dependent).

3. Take a snapshot.

4. Unlock the database.

126 C H A P T E R S I X

Download at WoweBook.Com

The whole process should take about one second.

On Amazon EC2, you will store your snapshots directly onto block storage. Unfortunately, the
snapshots are not portable, so you can’t use them for off-site storage. You therefore will need
to do database dumps, no matter how much you would rather avoid doing them. Because of
this need, I run my backups against a database slave. The slave can afford to be locked for a
period of time while a database dump completes. The fact that the slave may be a transaction
or two (or ten) behind the master is unimportant for the purposes of making a backup. What
matters is that you can create the dump without impacting your applications.

N O T E
With very large databases, performing dumps may simply take too long to be feasible. An

alternate approach involves backing up the database dumps along with the database logfiles

so that they, too, can be used to restore data after a crash or mistaken change. Alternately,

with MySQL, you can simply back up the database files. Both approaches are slightly more

complex than a straight database dump.

The steps for creating the database dump are:

1. Execute the database dump.

2. When complete, encrypt the dump and break it into small, manageable chunks.

3. Move the dump over to S3.

Amazon S3 limits your file size to 5 GB. As a result, you probably need to break your database
into chunks, and you should definitely encrypt it and anything else you send into Amazon S3.

Now that you have a portable backup of your database server, you can copy that backup out
of the Amazon cloud and be protected from the loss of your S3 backups.

Backup security

If you are following the security practices I outlined earlier in the book, your filesystems are
encrypted to protect the snapshots you are making for your backups from prying eyes. The
harder part is securing your portable backups as you store them in S3 and move them off site.

I typically use PGP-compatible encryption for my portable backups. You need to worry about
two issues:

• Keeping your private decryption key out of the cloud.

• Keeping your private decryption key some place that it will never, ever get lost.

Given the disaster recovery procedures I cover in this chapter, you really have no reason for
ever giving out the private decryption key to an instance in the cloud unless you are automating
the failover between two different cloud infrastructures. The cloud needs only your public
encryption key so it can encrypt the portable backups.

D I S A S T E R R E C O V E R Y 127

Download at WoweBook.Com

You can’t store your decryption key with your backups. Doing so will defeat the purpose
of encrypting the backups in the first place. Because you will store your decryption key
somewhere else, you run the risk of losing your decryption key independent of your backups.
On the other hand, keeping a bunch of copies of your decryption key will make it more likely
it will fall into the wrong hands.

The best approach? Keep two copies:

• One copy stored securely on a highly secure server in your internal network.

• One copy printed out on a piece of paper and stored in a safety deposit box nowhere near
the same building in which you house your highly secure server.

More than one person should know the locations of these copies. A true disaster can
unfortunately result in the loss of personnel, so personnel redundancy is also important for a
disaster recovery plan.

If you are automating the recovery from portable backups, you will also need to keep a copy
of the private decryption key on the server that orchestrates your automated recovery efforts.

Geographic Redundancy

Everything I have discussed so far in this chapter focuses on the Recovery Point Objective. In
the end, that’s the easiest part of disaster recovery. The virtualization technologies behind the
cloud simply make it a lot easier to automate those processes and have a relatively inexpensive
mechanism for off-site backups.

Turning now to your Recovery Time Objective, the key is redundancy in infrastructure. If you
can develop geographical redundancy, you can survive just about any physical disaster that
might happen. With a physical infrastructure, geographical redundancy is expensive. In the
cloud, however, it is relatively cheap.

You don’t necessarily need to have your application running actively in all locations, but you
need the ability to bring your application up from the redundant location in a state that meets
your Recovery Point Objective within a timeframe that meets your Recovery Time Objective.
If you have a 2-hour RTO with a 24-hour RPO, geographical redundancy means that your
second location can be operational within two hours of the complete loss of your primary
location using data that is no older than 24 hours.

Amazon provides built-in geographic redundancy in the form of regions and availability zones.
If you have your instances running in a given availability zone, you can get them started back
up in another availability zone in the same region without any effort. If you have specific
requirements around what constitutes geographic redundancy,‡ Amazon’s availability zones
may not be enough—you may have to span regions.

‡ Some government agencies and other organizations mandate a separation of at least 50 miles.

128 C H A P T E R S I X

Download at WoweBook.Com

Spanning availability zones

Just about everything in your Amazon infrastructure except block storage devices is available
across all availability zones in a given region. Although there is a charge for network traffic
that crosses availability zones, that charge is generally well worth the price for the leveraging
ability to create redundancy across availability zones.

Figure 6-1 illustrates an application environment that can easily tolerate the loss of an entire
availability zone.

If you lose the entire availability zone B, nothing happens. The application continues to operate
normally, although perhaps with degraded performance levels.

If you lose availability zone A, you will need to bring up a new load balancer in availability
zone B and promote the slave in that availability zone to master. The system can return to
operation in a few minutes with little or no data loss. If the database server were clustered and
you had a spare load balancer running silently in the background, you could reassign the IP

Load
balancer

INTERNET

Zone A Zone B

Application
server

MySQL
master

Application
server

MySQL
slave

FIGURE 6-1. By spanning multiple availability zones, you can achieve geographic redundancy

D I S A S T E R R E C O V E R Y 129

Download at WoweBook.Com

address from the old load balancer to the spare and see only a few seconds of downtime with
no data loss.

The Amazon SLA provides for a 99.95% uptime of at least two availability zones in each region.
If you span multiple availability zones, you can actually exceed the Amazon SLA in regions
that have more than two availability zones. The U.S. East Coast, for example, has three
availability zones.§ As a result, you have only a 33% chance of any given failure of two
availability zones being exactly the two zones you are using.

Even in the event that you are unfortunate enough to be operating in exactly the two zones
that fail, you can still exceed Amazon’s SLA as long as the region you are operating in has more
than two availability zones. The trick is to execute your disaster recovery procedures and bring
your infrastructure back up in the remaining availability zone. As a result, you can be
operational again while the other two availability zones are still down.

Operating across regions

At the time I write this chapter, Amazon supports two regions: us-east-1 (Eastern United
States) and eu-west-1 (Western Europe). These regions share little or no meaningful
infrastructure. The advantage of this structure is that your application can basically survive a
nuclear attack on the U.S. or EU (but not on both!) if you operate across regions. On the other
hand, the lack of common infrastructure makes the task of replicating your environments
across regions more difficult.

Each region has its own associated Amazon S3 region. Therefore, you cannot launch EC2
instances in the EU using AMIs from the U.S., and you cannot use IP addresses formerly
associated with a load balancer in the EU with a replacement in the U.S.

N O T E
As I write this, the whole idea of multiple regions is new to AWS. It is possible that some of

the restrictions I mention here are no longer true as you read this book. Furthermore, as

people gain more experience operating across multiple regions, they are likely to develop

best practices I am not considering in this section.

How you manage operations across regions depends on the nature of your web application
and your redundancy needs. It’s entirely likely that just having the capability to rapidly launch
in another region is good enough, without actually developing an infrastructure that
simultaneously operates in both regions.

The issues you need to consider for simultaneous operation include:

§ The EU region has exactly two availability zones. As a result, the best uptime you can promise in the EU
region alone is 99.95% availability.

130 C H A P T E R S I X

Download at WoweBook.Com

DNS management
You can use round-robin DNS to work around the fact that IP addresses are not portable
across regions, but you will end up sending European visitors to the U.S. and vice versa
(very inefficient network traffic management) and lose half your traffic when one of the
regions goes down. You can leverage a dynamic DNS system such as UltraDNS that will
offer up the right DNS resolution based on source and availability.

Database management
Clustering across regions is likely not practical (but you can try it). You can also set up a
master in one region with a slave in the other. Then you perform write operations against
the master, but read against the slave for traffic from the region with the slave. Another
option is to segment your database so that the European region has “European data” and
the U.S. region has “American data.” Each region also has a slave in the other region to
act as a recovery point from the full loss of a region.

Regulatory issues
The EU does not allow the storage of certain data outside of the EU. As a result, legally
you may not be allowed to operate across regions, no matter what clever technical
solutions you devise. In reality, an Amazon+GoGrid or Amazon+Rackspace approach to
redundancy may be more effective than trying to use Amazon’s two cross-jurisdictional
regions.

For most purposes, I recommend a process for regularly copying infrastructure elements (AMIs,
backups, and configuration) over into the other region and then having the ability to rapidly
start that infrastructure in the event of a total, prolonged failure of your core zone.

Organizational Redundancy

If you have an infrastructure that does everything I have recommended so far, you are pretty
well protected against everything physical that can happen. You are still exposed at the business
level, however. Specifically, if Amazon or Rackspace or GoGrid or whoever you are using goes
out of business or decides it is bored with cloud computing, you might find yourself in trouble.

Physical disasters are a relatively rare thing, but companies go out of business everywhere every
day—even big companies like Amazon and Rackspace. Even if a company goes into bankruptcy
restructuring, there’s no telling what will happen to the hardware assets that run their cloud
infrastructure. Your disaster recovery plan should therefore have contingencies that assume
your cloud provider simply disappears from the face of the earth.

You probably won’t run concurrent environments across multiple clouds unless it provides
some level of geographic advantage. Even in that case, your environments are not likely to be
redundant so much as segmented for the geographies they are serving. Instead, the best
approach to organizational redundancy is to identify another cloud provider and establish a
backup environment with that provider in the event your first provider fails.

D I S A S T E R R E C O V E R Y 131

Download at WoweBook.Com

W A R N I N G
When selecting an alternative cloud provider as your backup provider, you must verify that

this provider does not somehow rely on your primary provider for anything. For example,

if your secondary cloud provider uses the data center of your primary cloud provider to host

their physical infrastructure, you won’t be protected against the failure of your primary

provider.

The issues associated with organizational redundancy are similar to the issues I discussed earlier
around operating across Amazon EC2 regions. In particular, you must consider all of the
following concerns:

• Storing your portable backups at your secondary cloud provider.

• Creating machine images that can operate your applications in the secondary provider’s
virtualized environment.

• Keeping the machine images up to date with respect to their counterparts with the primary
provider.

• Not all cloud providers and managed service providers support the same operation systems
or filesystems. If your application is dependent on either, you need to make sure you select
a cloud provider that can support your needs.

Disaster Management
You are performing your backups and have an infrastructure in place with all of the appropriate
redundancies. To complete the disaster recovery scenario, you need to recognize when a
disaster has happened and have the tools and processes in place to execute your recovery plan.
One of the coolest things about the cloud is that all of this can be automated. You can recover
from the loss of Amazon’s U.S. data centers while you sleep.‖

Monitoring

Monitoring your cloud infrastructure is extremely important. You cannot replace a failing
server or execute your disaster recovery plan if you don’t know that there has been a failure.
The trick, however, is that your monitoring systems cannot live in either your primary or
secondary cloud provider’s infrastructure. They must be independent of your clouds. If you
want to enable automated disaster recovery, they also need the ability to manage your EC2
infrastructure from the monitoring site.

‖ Though it is probably not a good idea to automatically engage disaster recovery processes without some
human intervention when data could be lost during the launch of those processes.

132 C H A P T E R S I X

Download at WoweBook.Com

N O T E
There exist a number of tools, such as enStratus and RightScale, that manage your

infrastructure for you. Some even automate your disaster recovery processes so you don’t

have to write any custom code.

Your primary monitoring objective should be to figure out what is going to fail before it actually
fails. The most common problem I have encountered in EC2 is servers that gradually decrease
in local file I/O throughput until they become unusable. This problem is something you can
easily watch for and fix before users even notice it. On the other hand, if you wait for your
application to fail, chances are users have had to put up with poor performance for some period
of time before it failed completely. It may also prove to be a precursor to a larger cloud failure
event.

There are many other more mundane things that you should check on in a regular
environment. In particular, you should be checking capacity issues such as disk usage, RAM,
and CPU. I cover those things in more detail in Chapter 7.

In the end, however, you will need to monitor for failure at three levels:

• Through the provisioning API (for Amazon, the EC2 web services API)

• Through your own instance state monitoring tools

• Through your application health monitoring tools

Your cloud provider’s provisioning API will tell you about the health of your instances, any
volumes they are mounting, and the data centers in which they are operating. When you detect
a failure at this level, it likely means something has gone wrong with the cloud itself. Before
engaging in any disaster recovery, you will need to determine whether the outage is limited
to one server or affects indeterminate servers, impacting an entire availability zone or an entire
region.

Monitoring is not simply about checking for disasters; mostly it is checking on the mundane.
With enStratus, I put a Python service on each server that checks for a variety of server health
indicators—mostly related to capacity management. The service will notify the monitoring
system if there is a problem with the server or its configuration and allow the monitoring
system to take appropriate action. It also checks for the health of the applications running on
the instance.

Load Balancer Recovery

One of the reasons companies pay absurd amounts of money for physical load balancers is to
greatly reduce the likelihood of load balancer failure. With cloud vendors such as GoGrid—
and in the future, Amazon—you can realize the benefits of hardware load balancers without
incurring the costs. Under the current AWS offering, you have to use less-reliable EC2

D I S A S T E R R E C O V E R Y 133

Download at WoweBook.Com

instances. Recovering a load balancer in the cloud, however, is lightning fast. As a result, the
downside of a failure in your cloud-based load balancer is minor.

Recovering a load balancer is simply a matter of launching a new load balancer instance from
the AMI and notifying it of the IP addresses of its application servers. You can further reduce
any downtime by keeping a load balancer running in an alternative availability zone and then
remapping your static IP address upon the failure of the main load balancer.

Application Server Recovery

If you are operating multiple application servers in multiple availability zones, your system as
a whole will survive the failure of any one instance—or even an entire availability zone. You
will still need to recover that server so that future failures don’t affect your infrastructure.

The recovery of a failed application server is only slightly more complex than the recovery of
a failed load balancer. Like the failed load balancer, you start up a new instance from the
application server machine image. You then pass it configuration information, including where
the database is. Once the server is operational, you must notify the load balancer of the
existence of the new server (as well as deactivate its knowledge of the old one) so that the new
server enters the load-balancing rotation.

Database Recovery

Database recovery is the hardest part of disaster recovery in the cloud. Your disaster recovery
algorithm has to identify where an uncorrupted copy of the database exists. This process may
involve promoting slaves into masters, rearranging your backup management, and
reconfiguring application servers.

The best solution is a clustered database that can survive the loss of an individual database
server without the need to execute a complex recovery procedure. Absent clustering, the best
recovery plan is one that simply launches a new database instance and mounts the still-
functional EC2 volume formerly in use by the failed instance. When an instance goes down,
however, any number of related issues may also have an impact on that strategy:

• The database could be irreparably corrupted by whatever caused the instance to crash.

• The volume could have gone down with the instance.

• The instance’s availability zone (and thus the volume as well) could be unavailable.

• You could find yourself unable to launch new instances in the volume’s availability zone.

On the face of it, it might seem that the likelihood of both things going wrong is small, but it
happens. As a result, you need a fallback plan for your recovery plan. The following process
will typically cover all levels of database failure:

134 C H A P T E R S I X

Download at WoweBook.Com

1. Launch a replacement instance in the old instance’s availability zone and mount its old
volume.

2. If the launch fails but the volume is still running, snapshot the volume and launch a new
instance in any zone, and then create a volume in that zone based on the snapshot.

3. If the volume from step 1 or the snapshot from step 2 are corrupt, you need to fall back
to the replication slave and promote it to database master.

4. If the database slave is not running or is somehow corrupted, the next step is to launch a
replacement volume from the most recent database snapshot.

5. If the snapshot is corrupt, go further back in time until you find a backup that is not
corrupt.

Step 4 typically represents your worst-case scenario. If you get to 5, there is something
wrong with the way you are doing backups.

HOW DO I KNOW MY BACKUPS ARE WORKING?
You need to test your disaster recovery procedures to know for sure that your backups are solid
and the processes you have in place will work. I recommend testing your processes and your backups
once every quarter, and certainly no less than once each year.

The most significant area in which your disaster recovery process can go wrong is in the database
backups. Specifically, if you are not backing up your databases properly, the backups can appear
to succeed but instead result in corrupted database backups. Silent failures are a bad thing.

The simplest way to test your database backup tools is to set up some bots to place a very high write
transaction load on your database. Execute the backup script while the bots are running, and then
try to recover the database from the backup. If your backup process is questionable, this test should
leave you with a corrupted database.

D I S A S T E R R E C O V E R Y 135

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R S E V E N

Scaling a Cloud Infrastructure

ONE OF THE MOST USEFUL FEATURES of cloud infrastructures is the ability to automatically scale
an infrastructure vertically and horizontally with little or no impact to the applications running
in that infrastructure. In truth, useful is an understatement. This feature fundamentally alters
IT managers’ relationships to their infrastructures and changes the way finance managers look
at IT funding. But the feature is a double-edged sword.

The obvious benefit of cloud scaling is that you pay only for the resources you use. The
noncloud approach is to buy infrastructure for peak capacity, waste resources, and pray your
capacity planning was spot on. The downside of cloud scaling, however, is that it can become
a crutch that lazy system architects use to avoid capacity planning. In addition, over-reliance
on cloud scaling can lead an organization to respond to demand—and thus add cloud
instances—when the demand in question simply has no business benefit.

In this chapter, I guide you through the issues of scaling a cloud infrastructure so that you can
intelligently apply the full capabilities of the cloud to your IT infrastructure without falling prey
to its dangers. Your success will start with reasonable capacity planning.

Capacity Planning
Capacity planning is basically developing a strategy that guarantees your infrastructure can
support the resource demands placed on it. Covering the intricacies of capacity planning
could fill an entire book. In fact, John Allspaw has done just that with his O’Reilly book titled
The Art of Capacity Planning (http://oreilly.com/catalog/9780596518578/index.html). I
recommend reading that book, as capacity planning is truly important to success in the cloud.

137

Download at WoweBook.Com

http://oreilly.com/catalog/9780596518578/index.html
http://oreilly.com/catalog/9780596518578/index.html

For the purposes of this book, however, we will look at the core concerns for scaling in the
cloud:

• Knowing your expected usage patterns as they vary during the day, over the course of a
week, during holidays, and across the seasonal variance of your business

• Knowing how your application responds to load so that you can identify when and what
kind of additional capacity you will need

• Knowing the value of your systems to the business so you can know when adding capacity
provides value—and when it doesn’t

Some look at the ability of cloud environments to automatically scale based on demand and
think they no longer need to engage in capacity planning. Some look at capacity planning and
think of tens or hundreds of thousands of dollars in consulting fees. Both thoughts are
dangerous myths that must be put to rest.

Capacity planning is just as important in the cloud as it is in a physical infrastructure. And you
do not need to engage in some outlandish capacity planning project to develop a proper
plan. In the end, your objective is simply to make sure that when you incur additional cost by
scaling your infrastructure, the additional cost will be supporting your objectives for that
infrastructure.

Expected Demand

You absolutely need to know what demands you expect to be placed on your application. I am
not suggesting you need to be a seer and accurately predict the number of page views on your
website every day. You simply need to have a well-quantified expectation that will enable you
to:

• Plan out an infrastructure to support expected loads

• Recognize when actual load is diverging in a meaningful way from expected load

• Understand the impact of changing application requirements on your infrastructure

The most obvious value of demand estimation is that—combined with understanding how
your system responds to load—it tells you how many servers you need, what kind of servers
you need, and what resources those servers require. If you have no idea how many people will
use your website or web application, you literally have no idea whether the infrastructure you
have put together will work right. It could fail within an hour of deployment, or you could
waste countless amounts of money on unnecessary infrastructure.

You cannot possibly be expected to predict the future. The point of capacity planning is not to
eliminate unexpected peaks in demand; you will always have unexpected peaks in demand.
The point of capacity planning is to help you plan for the expected, recognize the unexpected,
and react appropriately to the deviation.

138 C H A P T E R S E V E N

Download at WoweBook.Com

Consider, for example, the scenario in which you have an infrastructure that supports 10
million transactions/second and you have a growth from your average load of 1 million
transactions/second to 5 million transactions/second. If you had properly estimated the load,
you would recognize whether the sudden surge was expected (and thus nothing to be
concerned about) or unexpected and thus something to watch for potential capacity problems.
Without proper load estimation, you would not know what to do about the variation.

Determining your expected demand

Figures 7-1 and 7-2 provide charts illustrating the expected traffic for an e-commerce site over
the course of a typical day as well as projected peak volumes over the next 12 months.

The daily chart shows peaks in the morning, at lunch, and in the early evening. A major lull—
almost nonexistent traffic—balances out these peaks in the early morning hours.

As a growing company, we expect gradually increasing volumes over the course of the year,
punctuated by two product launches in May and September. Finally, we also have a seasonal
increase in purchasing at the end of the year.

How do we get these numbers? As with many things, it depends on the application. In the case
of the daily chart, historical patterns should form the basis of your expectations. If you have a
steady business, the historical patterns are your expectations. A growing business, however,
will see behavior alter with the changing market.

0

37.5

75.0

112.5

150.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

FIGURE 7-1. The projected daily load on an e-commerce site

S C A L I N G A C L O U D I N F R A S T R U C T U R E 139

Download at WoweBook.Com

A more challenging situation is one in which you have no historical data. If you understand
your market, a best guess is good enough until you develop historical data.

At the annual level, however, much of your projections are based on projections coming from
other parts of the business. If you are selling goods to consumers, chances are that you expect
seasonal variation, especially at the end of the year. Beyond general seasonal availability,
however, you are at the mercy of what the business is doing to drive traffic to your website.
You should therefore become good friends with sales, marketing, and anyone else who is
driving traffic into the site. As we saw in Figure 7-2, you need to know about the intended
product launch in May and the demand the company is projecting for the product in order to
take that into account in your projections.

Analyzing the unexpected

You will see unexpected traffic. Sometimes the company launches a product that exceeds
expectations; sometimes you receive unplanned media coverage; sometimes you are simply
going to be wrong. Any time significant unexpected traffic hits your web systems, it’s important
to understand why traffic is varying from the unexpected. As we will discuss later in this
section, that unexpected traffic could be either good news or bad news. It may require a change
in all your projections, or it may simply be a wayward blip on the radar screen.

0

5,000

10,000

15,000

20,000

1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 7-2. The expected load on the e-commerce site over the next 12 months

140 C H A P T E R S E V E N

Download at WoweBook.Com

The Impact of Load

The ability to scale a web application or website is tied directly to understanding where the
resource constraints lie and what impact the addition of various resources has on the
application. Unfortunately, architects more often than not assume that simply adding another
server into the mix can fix any performance problem. In reality, adding an application server
into an infrastructure with a disk I/O bound database server will only make your problem
worse. System architects must therefore understand the expected usage patterns of the
applications they manage and execute tests to see how different scenarios create stress points
in the infrastructure.

Assuming a perfectly efficient web application and database engine, the typical web application
deployed into the cloud has all of these potential capacity constraints:

• The bandwidth into the load balancer

• The CPU and RAM of the load balancer

• The ability of the load balancer to properly spread load across the application servers

• The bandwidth between the load balancer and the application servers

• The CPU and RAM of the application server

• The disk I/O for read operations on the application server

• The write I/O for disk operations on the application server, a secondary disk constraint if
the application is caching on the disk

• The bandwidth between the application server and any network storage devices (such as
Amazon elastic block storage devices)

• The bandwidth between the application server and the database server

• The disk I/O for read operations on the read database

• The disk I/O for write operations on the write database

• The amount of space on the disk to support data storage needs

That’s a lot of points where an application can run out of capacity. In reality, however, most
of those are not the real problem. Your web application and database architectures are most
likely to be the real problems.

Application architecture and database architecture revisited

In Chapter 4, I covered the proper way to architect an application for scaling in the cloud. To
summarize, you follow the same rules that enable an application to scale horizontally outside
of the cloud. You should follow these guidelines:

• Use the fastest storage devices available to you for database access

• Avoid keeping transactional data at the application server layer

S C A L I N G A C L O U D I N F R A S T R U C T U R E 141

Download at WoweBook.Com

• Enable multiple copies of your application server to run against the same database without
any communication between the application servers

• Properly index your database

• If possible, use a master/slave setup with read operations directed to slaves

• With Amazon EC2, design your redundancies to minimize traffic across availability zones

Points of scale

Depending on your application, the most likely initial stress points will be one of the following
three components:

• The CPU on your application server

• The RAM on your application server

• The disk I/O on your database server

Every application has stress points. If it didn’t, it could run on a single Intel 386 under indefinite
load. For the Valtira application (a Java-based web application I architected for the company
by the same name), our first bottleneck is always CPU on the application server. As it scales
horizontally, CPU ceases to be a significant factor, but (depending on the content inside the
Valtira deployment) we encounter a new bottleneck on either bandwidth into the network or
database disk I/O. In the cloud, it’s the disk I/O.

So our next point of scale is to split out read operations across multiple database slaves and use
the master only for write operations.* The next choke point tends to become the disk I/O for
write operations on the database master. At that point, we need to segment the database or
look at a more expensive database solution.

In other words, we have a firm grasp over how our application operates, where we run into
capacity constraints, and what we can do about those capacity constraints. Without that
knowledge, I might be deluded into believing the solution is always to add application servers.

Of course, you could do a very expensive analysis to try to determine the exact number of
users at which you need to take each scaling action. That’s not really necessary, however. Just
launch your environment at the expected level of scale, begin running realistic load tests, and
make notes on the impact of load and additional scale. It should take very little time and cost
very little money, and the information you use should be good enough, except for situations
in which hiring expert capacity planners is absolutely necessary.

* To be able to split read operations from write operations, you need to have some protection in your
application against dirty writes, as described in Chapter 4.

142 C H A P T E R S E V E N

Download at WoweBook.Com

The Value of Your Capacity

In a web application, you don’t simply add more capacity to the system just because your CPUs
have hit 90% utilization. It’s important to be able to answer the question, “What does
supporting this additional load get me?” Knowing the value of the demand on your system
will help answer that question.

In a grid computing system, it’s often easy to understand the value of additional load. For
example, a video-rendering farm scales specifically to render more video. If that’s your
business, you should be able to determine what rendering each video is worth to you and do
an appropriate cost/benefit analysis. Understanding whether you are launching more capacity
to support one video—as opposed to waiting for existing capacity to become available—will
help you be more efficient in your spending. For the most part, however, the decision to add
capacity in many nonweb systems is generally straightforward.

Web applications aren’t that cut-and-dried. A website or web application typically supports
dozens or hundreds of different use cases, each with its own value to the business. The value
on an e-commerce site of the shopping experience is much different from the value of the
CMO’s blog. A 100% spike in activity related to a successful product promotion is thus more
important than a 100% spike in activity due to a Twitter reference to the CMO’s latest blog
entry.

A simple thought experiment

Let’s look at a simple example of what I am talking about. We have a simple web applica-
tion with basic corporate content that serves as our main sales generation tool. We use
SalesForce.com’s Web2Lead to take leads from the website and get them into SalesForce.com.
An intranet component behind the website enables the marketing team to set up campaigns
and landing pages and do basic reporting.

The website begins seeing a sudden, unexpected spike in activity. As load approaches capacity,
do we add more capacity or do we let it ride the storm?

To make the call, we need to know how much it is going to cost to add capacity and the value
of that capacity to the business. The critical questions we need to answer are:

• How is the lack of capacity impacting site visitors?

• Do we think this spike represents appropriate uses of the system? Is there a bigger issue
we need to be concerned with?

• Do we expect the demand to increase further? Do we think we are near the peak?

• Does it cost us anything to let things ride? If so, is that cost greater than the cost of adding
capacity into the system?

S C A L I N G A C L O U D I N F R A S T R U C T U R E 143

Download at WoweBook.Com

For the purposes of this thought experiment, we will assume all scaling is done manually. Now
we can do some research. Imagine we find the following answers to our questions:

How is the lack of capacity impacting site visitors?
As we approach capacity, the website begins to slow down and the system stops processing
logins. If the system gets too bogged down, the speed of the site will eventually become
unusable.

Do we think the spike is legitimate?
An analysis of site traffic shows that the CMO said something controversial in her blog
and a number of social media sites picked up on it. The blog is being hammered pretty
heavily, but the rest of site traffic is pretty much normal.

Do we expect things to get worse?
It does not look like it, as the traffic has begun to level out. But is this a new usage plateau?

Does it cost us anything to let things ride?
The cost of letting this play out is largely insignificant, as regular site visitors are still getting
through. The only people significantly impacted are internal marketing users who can put
up with a few hours of limited or no access. On the other hand, because we are in the
cloud and we have done load testing, we know that adding a single additional application
server will return system operation to normal. In other words, it will cost us a few dollars.

The answer
We add the capacity. It does not buy us much, but it also does not cost us much.

How might the outcome have been different?

The most important lesson of this experiment is how different the results and our decision
would have been if we were not in a cloud. The cost of adding more capacity would have been
huge and, by the time we got it, the unexpected demand would have subsided.

Another outcome worth considering, however, is if there were something peculiar about the
traffic—for instance, if it appeared to be some kind of out-of-control botnet looking for site
vulnerabilities. The issues become much more difficult in that scenario because it is unclear
whether adding capacity is going to help you. In fact, you might end up in a situation in which
as you add capacity, the botnet increases its probes ands forces you to add more capacity. In
short, you would be in a spiral in which you increasingly become a victim to the botnet. The
net impact of additional capacity on normal traffic is negligible. As a result, you could be
incurring greater cost and greater exposure to an external threat without incurring any
business benefit.

The key point here is that additional demand does not automatically mean that you must add
more capacity.

144 C H A P T E R S E V E N

Download at WoweBook.Com

Cloud Scale
The cloud empowers you to alter your computing resources to meet your load requirements.
You can alter your capacity both manually (by executing a command on a command line or
through a web interface) and programmatically (through predefined changes in capacity or
through software that automatically adjusts capacity to meet actual demand).

The ability to manually adjust capacity is a huge advantage over traditional computing. But
the real power of scaling in the cloud lies in dynamic scaling.

Dynamic scaling
This term—which I sometimes also refer to as cloud scaling—enables software to adjust
the resources in your infrastructure without your interactive involvement. Dynamic
scaling can take the form of proactive scaling or reactive scaling.

Proactive scaling
This involves a schedule for altering your infrastructure based on projected demand. If
you consider the application described back in Figure 7-1, we would configure our cloud
management tools to run with a minimal infrastructure that supports our availability
requirements during the early morning hours, add capacity in the late morning, drop back
to the baseline until lunch, and so on. This strategy does not wait for demand to increase,
but instead increases capacity based on a plan.

Reactive scaling
In this strategy, your infrastructure reacts to changes in demand by adding and removing
capacity on its own accord. In the capacity valuation thought experiment, an environment
engaging in reactive scaling might have automatically added capacity when it detected the
unexpected spike in activity on the CMO blog.

N O T E
If you have read my blog online, you may have noticed that in the past I have used the terms

“dynamic scaling” to refer to proactive scaling and “auto-scaling” to refer to reactive scaling.

I have altered the terminology here because “dynamic” and “automatic” have proven to be

confusing terms, whereas the difference between proactive and reactive is fairly easy to

understand.

Tools and Monitoring Systems

Throughout this book, I have referred to cloud infrastructure management tools and
monitoring systems as being critical to the management of a cloud infrastructure. I run one
such company, enStratus, but there are a number of other good systems out there, including
RightScale and Morph. Which one is right for you depends on your budget, the kinds of
applications you manage, and what parts of infrastructure management matter most to you.

S C A L I N G A C L O U D I N F R A S T R U C T U R E 145

Download at WoweBook.Com

Whatever tool you pick, it should minimally have the following capabilities (and all three
services I mentioned have them):

• To schedule changes in capacity for your application deployments

• To monitor the deployments for excess (and less than normal) demand

• To adjust capacity automatically based on unexpected spikes or falloffs in demand

Monitoring involves a lot more than watching for capacity caps and switching servers off and
on. In Chapter 6, I covered the role monitoring plays in watching for failures in the cloud and
recovering from those failures. A notification system is obviously a big part of monitoring for
failures. You should have full logging of any change in capacity—whether scheduled or not—
and email notifications of anything extraordinary.

You can also roll your own monitoring system if you don’t want to pay for someone else’s
software. A monitoring system has the architecture described in Figure 7-3.

Compared to disaster recovery, it’s not as critical for capacity planning purposes that your
monitoring server be outside the cloud. Nevertheless, it’s a very good idea, and a critical choice
if bandwidth management is part of your monitoring profile.

The monitoring checks on each individual server to get a picture of its current resource
constraints. Each cloud instance has a process capable of taking the vitals of that instance and
reporting back to the monitoring server. Most modern operating systems have the ability to
operate as the status process for core system data, such as CPU, RAM, and other SNMP-related

The cloud

Server

Status
process

Outside the cloud

Monitoring server

Monitoring
software

Server

Status
process

FIGURE 7-3. General architecture for a system monitoring your cloud health

146 C H A P T E R S E V E N

Download at WoweBook.Com

data. In addition, Java application servers support the JMX interfaces that enable you to query
the performance of your Java virtual machines.

For security purposes, I prefer having the monitoring server poll the cloud instances rather
than making the cloud instances regularly report into the monitoring server. By polling, you
can put your monitoring server behind a firewall and allow no incoming traffic into the server.
It’s also important to keep in mind that you need the ability to scale the monitoring server as
the number of nodes it must monitor grows.

The process that checks instance vitals must vary for each instance based on its function. A
load balancer can be fairly dumb, and so all the monitor needs to worry about is the server’s
RAM and CPU utilization. A database server needs to be slightly more intelligent: the vitals
process must review disk I/O performance for any signs of trouble. The most difficult
monitoring process supports your application servers. It should be capable of reporting not
simply how much the instance’s resources are being utilized, but what the activity on the
instance looks like.

The monitoring server then uses analytics to process all of that data. It knows when it is time
to proactively add and remove scale, how to recognize unexpected activity, and how to trigger
rules in response to unexpected activity.

The procurement process in the cloud

Whether you scale dynamically or through a human pulling the levers, the way you think
about spending money in the cloud is very different from a traditional infrastructure. When
you add new resources into your internal data center or with a managed services provider, you
typically need to get a purchase order approved through your company procurement processes.
Finance approves the purchase order against your department’s budget, and the order goes off
to the vendor. You don’t spend $3,000 on a server unless that spend is cleared through Finance.

Nothing in the AWS infrastructure prevents you from executing ec2-run-instances just one
time on an EC2 extra-large instance and spending $7,000 over the course of a year. Anyone
who has access to launch new instances or alter the scaling criteria of your cloud management
tools has full procurement rights in the cloud. There’s no justification that an IT manager needs
to make to Finance; it’s just a configuration parameter in a program that Finance may never
touch.

Finance should therefore be involved in approving the monthly budget for the team managing
the cloud infrastructure. Furthermore, controls should be in place to make sure any alterations
in the resources you have deployed into the cloud are aligned with the approved budget. If
you don’t put this human process in place, you may find Finance turning from the biggest
supporter of your move into the cloud to your biggest critic.

S C A L I N G A C L O U D I N F R A S T R U C T U R E 147

Download at WoweBook.Com

Managing proactive scaling

A well-designed proactive scaling system enables you to schedule capacity changes that match
your expected changes in application demand. When using proactive scaling, you should
understand your expected standard deviation. You don’t need to get out the statistics
textbooks…or worse, throw out this book because I mentioned a term from statistics. I
simply mean you should roughly understand how much normal traffic deviates from your
expectations. If you expect site activity of 1,000 page views/hour around noon and you are
seeing 1,100, is that really unexpected? Probably not.

Your capacity for any point in time should therefore be able to handle the high end of your
expected capacity with some room to spare. The most efficient use of your resources is just shy
of their capacity, but scheduling things that way can create problems when your expectations
are wrong—even when combined with reactive scaling. Understanding what constitutes that
“room to spare” is probably the hardest part of capacity planning.

Managing reactive scaling

Reactive scaling is a powerful rope you can easily hang yourself with. It enables you to react
quickly to unexpected demand. If you fail to do any capacity planning and instead rely solely
on reactive scaling to manage a web application, however, you probably will end up hanging
yourself with this rope.

The crudest form of reactive scaling is utilization-based. In other words, when your CPU or
RAM or other resource reaches a certain level of utilization, you add more of that resource
into your environment. It makes for very simple logic for the monitoring system, but
realistically, it’s what you need only a fraction of the time. We’ve already seen some examples
of where this will fail:

• Hiked-up application server processing that suffers from an I/O bound database server.
The result is increased loads on the database server that further aggravate the situation.

• An attack that will use up whatever resources you throw at it. The result is a spiraling
series of attempts to launch new resources while your costs go through the roof.

• An unexpected spike in web activity that begins taxing your infrastructure but only mildly
impacts the end user experience. You know the activity will subside, but your monitor
launches new instances simply because it perceives load.

A good monitoring system will provide tools that mitigate these potential problems with
reactive scaling. I have never seen a system, however, that is perfectly capable of dealing with
the last scenario. It calls for an understanding of the problem domain and the pattern of activity
that determines you should not launch new instances—and I don’t know of an algorithmic
substitute for human intuition for these decisions.

148 C H A P T E R S E V E N

Download at WoweBook.Com

However your monitoring system defines its rules for reactive scaling, you should always have
a governor in place. A governor places limits on how many resources the monitoring system
can automatically launch, and thus how much money your monitoring system can spend on
your behalf. In the case of the attack on your infrastructure, your systems would eventually
end up grinding to a halt as you hit your governor limit, but you would not end up spending
money adding an insane number of instances into your cloud environment.

A final issue of concern that affects both proactive and reactive scaling—but more so for reactive
scaling—is the fallibility of Amazon S3 and the AWS APIs. If you are counting on reactive
scaling to make sure you have enough resources, Amazon S3 issues will weaken your plans.
Your system will then fail you.

A recommended approach

I am not terribly fond of reactive scaling, but it does have its uses. I prefer to rely heavily on
proactive scaling to manage my infrastructure based on expected demand, including excess
capacity roughly one to two times the difference between expected demand and the highest
expected demand (about three to five standard deviations from the expected demand). With
this setup, reactive scaling should almost never kick in.

Unexpected demand does occur. Instead of using reactive scaling to manage unexpected load,
I instead use it to give people time to react and assess the situation. My governors are thus
generally set to 150% to 200% of the baseline configuration. In other words, if my baseline
configuration has two application servers and my application will scale to 200% of the baseline
capacity by adding two more application servers, I direct the governor to limit scaling at two
application servers and notify me well in advance of the need to add even one.

As a result of using reactive scaling in this way, my infrastructure should scale in a controlled
manner automatically in reaction to the unexpected demand up to a certain point. I should
also have the time to examine the unexpected activity to determine whether I want to bump
up the governors, change my baseline configuration, or ignore the event altogether. Because
I am not running near capacity and I am not relying on reactive scaling to keep things running,
Amazon S3 failures are unlikely to impact me.

Although the absolute numbers I have mentioned may not make sense for your web
application, the general policy should serve you well. Whatever numbers make sense for your
application, you should have an approved budget to operate at the peak capacity for at least
long enough a time period to approve increasing the budget. If your budget is approved for
expected capacity and you find yourself operating at the limits of your governors, your finance
department will not be pleased with you.

S C A L I N G A C L O U D I N F R A S T R U C T U R E 149

Download at WoweBook.Com

Scaling Vertically

So far, I have been entirely focused on horizontal scaling, which is scaling through the addition
of new servers. Vertical scalability, on the other hand, is scaling by replacing an existing server
with a beefier one or a more specialized one. All virtualized environments—and cloud
environments in particular—are very good at horizontal scaling. When it comes to vertical
scaling, however, the cloud has some important strengths and some very important
weaknesses.

The strength of the cloud with respect to vertical scaling is the ease with which you can try out
smaller or less-specialized configurations and the ability to make the system prove the need
for more configurations. Clouds (and the Amazon cloud more so than its competitors) do a
poor job of providing specialized system configurations.

Amazon currently provides you with five different system choices. If a component of your
application requires more RAM than one of the Amazon instances supports, you are out of
luck. GoGrid, in contrast, provides a greater degree of customization, including the ability to
design high I/O configurations. In the end, none of these options will match your ability to
configure a very specialized system through Dell’s configurator.

Though I have spent a lot of time in this book talking about horizontal scaling, I always scale
vertically first.

START SMALL
When we build applications at Valtira, we start on Amazon’s medium instances and force the
application to prove it needs a large or extra-large instance. In the end, large instances cost four
times as much as medium instances. If you can get the same performance spreading your application
across four medium application servers as you get from one large instance, you are better off using
the medium instance, since you get availability and performance this way. You get only performance
with the large instance.

Vertical scalability in the Amazon cloud is most effective when you need more RAM. The
Valtira application I mentioned earlier in this chapter is an excellent example of such an
application. I left out that the first point of scale for Valtira is actually RAM. Most systems
deployed on the Valtira platform don’t need a lot of RAM—1 to 2 GB is generally sufficient.
Some applications that leverage certain components of the Valtira platform, however, require
a lot more RAM. Because Valtira will essentially duplicate its memory footprint across all
servers in a cluster, adding more servers into the equation does not help at all. Moving to a
server with more RAM, however, makes all the difference in the world.

150 C H A P T E R S E V E N

Download at WoweBook.Com

Vertical scalability can help with other capacity constraints as well. Table 7-1 describes how a
theoretical application responds to different kinds of scaling.

TABLE 7-1. Example of Amazon server CPU options

Configuration Capacity Cost

Eight Amazon medium 8,000 page views/minute $0.80/hour

Two Amazon large 10,000 page views/minute $0.80/hour

One Amazon extra-large 10,000 page views/minute $0.80/hour

If you assume linear scalability horizontally, you want to switch the infrastructure from eight
medium instances to two large instances rather than adding a ninth medium instance.
Admittedly, this example is absurdly simplistic. The point, however, is that sometimes it simply
makes financial sense to scale vertically.

Vertical dynamic scaling is trickier than horizontal. More to the point, scaling vertically is a
special case of horizontal scaling. It requires the following delicate dance:

1. Add an instance into the cloud of the beefier system, as if you were scaling horizontally.
The only difference is that you are using one of the larger machine instances instead of a
duplicate of the existing infrastructure instances.

2. Wait for the new instance to begin responding to requests.

3. Remove one or more of the old, smaller instances from the system.

When you put horizontal scaling together with vertical scaling, you end up with an
infrastructure that makes the most efficient use of computing resources.

S C A L I N G A C L O U D I N F R A S T R U C T U R E 151

Download at WoweBook.Com

Download at WoweBook.Com

A P P E N D I X A

Amazon Web Services Reference

AMAZON WEB SERVICES ARE ACCESSIBLE PRIMARILY through SOAP and REST web services
with higher-level command lines and language-specific APIs built on top of them. This
appendix describes the commands that wrap around those APIs.

Many different higher-level abstractions exist that implement the SOAP and APIs in different
programming languages. If you are building tools to manage EC2 or S3, you should identify
the library best suited to your programming language and functional needs.

Amazon EC2 Command-Line Reference
The Amazon EC2 command-line tools are wrappers around the web services API. In fact, there
is basically a one-to-one mapping between a command line, its arguments, and an API call of
a similar name with similar parameters.

Every command has the following general form:

command [GENERAL OPTIONS] [COMMAND OPTIONS]

For example, the command to start an EC2 instance looks like this:

ec2-run-instances -v ami-123456 -g dmz

In this instance, the -v is a general option for specifying verbose output, and ami-1234566 -g
dmz are the command-specific options.

153

Download at WoweBook.Com

The general options are:

-

Pull in command parameters from standard input.

-C certificate
The certificate to authenticate your web services request with Amazon. This value
overrides the environment variable EC2_CERT.

--connection-timeout

Indicates an alternate SOAP connection timeout in seconds.

--debug
Prints out debug information.

--headers

Display column headers.

--help

Prints out help for the command in question.

-K privatekey
The private key to authenticate your web services request with Amazon. This value
overrides the environment variable EC2_PRIVATE_KEY.

--region region
Specifies the region to apply to the command.

--request-timeout

Indicates an alternate SOAP request timeout in seconds.

--show-empty-fields

Displays empty columns in command responses as (nil).

-U url
Specifies the Amazon Web Services URL to make the API call against. This option overrides
the EC2_URL environment variable.

-v

Indicates that you would like verbose output. Verbose output shows the SOAP requests
and responses.

ec2-add-group

ec2-add-group groupname -d description

Adds a new security group into your Amazon EC2 environment. The group name you provide will

identify the group for use in other commands. The description is simply a user-friendly description to

help you remember the purpose of the group.

154 A P P E N D I X A

Download at WoweBook.Com

The new group allows no external access to instances launched in it. You must call ec2-authorize
before any traffic will route to instances in this group.

Example
$ ec2-add-group mydmz -d DMZ
GROUP mydmz DMZ

ec2-add-keypair

ec2-add-keypair keyname

Creates a new RSA 2048-bit encryption key pair. The name you specify in creating the key will be

used for referencing the key using other commands or the EC2 web services API. The command stores

the public key with Amazon and displays the private key to stdout. You should then securely store

the private for use in accessing instances you launch using this key pair.

Example
$ ec2-add-keypair georgekey
KEYPAIR georgekey 2e:82:bb:91:ca:51:22:e1:1a:84:c8:19:db:7c:8b:ad:f9:5e:27:3e
-----BEGIN RSA PRIVATE KEY-----
MIIEowIBAAKCAQEAkot9/09tIy5FJSh0X5vLGCu3so5Q4qG7cU/MBm45c4EVFtMDpU1VpAQi1vn9
r7hr5kLr+ido1d1eBmCkRkHuyhfviJmH1FTOWm6JBhfOsOgDU0pInyQOP0nRFLx4eyJfYsiK/mUm
hiYC9Q6VnePjMUiHSahOL95C8ndAFBlUAuMDDrXMhLypOGRuWkJo+xtlVdisKjlOT0l33q3VSeT6
NBmZwymWOguGWgKWMpzpDLhV9jhDhZgaZmGUKP0wPQqdV6psA9PuStN1LJkhWVYuQTqH9UUolvJn
ZXx5yE2CSpPW+8zMb4/xUuweBQ6grw8O3IxhKWbFCpGGhkpk5BB+MQIDAQABAoIBAQCIs6U6mA4X
5l7MFdvRIFSpXIbFAutDLlnbjvOlAAeJzt0saHWbKvP7x3v0jElxNRk6OC1HMqIh9plyW46Cl5i4
XvGsvIOvt9izFS+vRmAiOJx5gu8RvSGpOiPXMyU0wFC4ppi6TQNN2oGhthQtsFrMK3tAY8dj8fMD
mehll2b+NPZRWPp9frm3QtwLIOMeWm1ntknCVSjBqj21XRg3UPbE8r8ISlSGryqJBA0KjnOj+cMN
2SBx8iC+BHxD9xSUvXs4hVjUpQofzd+8BAZbsXswj+/ybuq1GlNwzpUKKEfH1rN3TZztywN5Z9Hb
EbkOtgRYi/2htSpbuDq5b/cTaxIRAoGBAOLRgfZhEwnGQvveMOhRLLko1D8kGVHP6KCwlYiNow07
G8FkP6U3wcUrsCTtvOFB/79FeWVT+o7v25D34cYFtGbfnp3Zh9bdTBi18PbIHQHvD4tIAIF+4PcO
XMRsJCrzhChOLY1G/laMi5EKFcx6RU8Pjup92YbEbi/fkybcrmS9AoGBAKVmGI5PV00A10LQkTov
CnLuyfAPL9s8w6eOy+9WMRd8+27tI6H8yGuEdsF9X9bOJQsnTM3+A+RC8ylVXWPgiflbcpbPsZ8a
HVuTg37D/iFpl42RzrMtzhgLCahvNotirNyAYnklBsOlmtsQdJSJ0GPpv4SOloSoPT+jbP4ONUiF
AoGAWU48aZHXOSYDAcB+aTps7YqR5zqDbZ767SoZ9mYuKOt5BjA+jwLhHI0TEbc5g0fFNr5YCfmC
0fzG6tFu59UfLtIlVelsfsErUR9x/PjV0wkZibGT4Wjfkubox738j5zKEESX0uR9B/7WhQj/hD8w
QuzRTKq4l0OITvksq0SAtdECgYAqpr1GVWdp0AGylR4eJutG4BTq9r+chXrexpAIU+2s5OnhnP1H
VGxKbYpCMxZ3ygj7a1L++7X9MtaJnh3LF6f8yXwvL7faE13ms4+BLQFnlFckhqkKw5EV2iLPcH5c
S0HQSrsaClZINXhNbVziwPcgDLL6d9qQsuG4e2gry3YqEQKBgFHqE4UJCOd5WiAG0N0cYDTF/wh6
iujW5tY90F63xAn2B236DGE+8o2wGwU77u59LO7jyx4WyR8TpcorL79zZuzm0Vjn9nslAu7tkS6O
wmdEM0O2LrGnKGydSdRF50NH8Tgb060txh+hWyWtvkP0tSOZyGu1z7S7JS0ZPX42Arm8
-----END RSA PRIVATE KEY-----

ec2-allocate-address

ec2-allocate-address

Allocates a new Amazon elastic IP address and prints out the allocated address. This newly allocated

address then becomes available only to you, to assign to instances as you wish. Amazon charges for

the nonuse of elastic IP addresses as well as excessive reassignment of addresses.

A M A Z O N W E B S E R V I C E S R E F E R E N C E 155

Download at WoweBook.Com

Example
$ ec2-allocate-address
ADDRESS 67.202.55.255

ec2-associate-address

ec2-associate-address -i instanceid ipaddress

Associates an address obtained through ec2-allocate-address with a running EC2 instance. This

command will also disassociate the IP address with any current associations it might have. It is

therefore important you not accidentally use this method to reassign an IP unless you intend the

reassignment.

Example
$ ec2-associate-address -i i-12b3ff6a 67.202.55.255
ADDRESS 67.202.55.255 i-12b3ff6a

ec2-attach-volume

ec2-attach-volume volumeid -i instanceid -d device

Attaches an existing elastic block storage volume to a running EC2 instance, exposing it to the instance

as the specified device. The proper device name is platform-dependent, with Linux variants expecting

device names such as /dev/sdh and Windows expecting device names such as xvdh.

With the block storage volume attached to your instance, you can mount and format it from the

instance using the operating-system-specific disk management utilities.

The command output describes the state of the attaching volume with its attachment information.

Example
$ ec2-attach-volume vol-81aeb37f -i i-12b3ff6a -d /dev/sdf
ATTACHMENT vol-81aeb37f i-12b3ff6a /dev/sdf attaching 2008-12-17T22:36:00+0000

ec2-authorize

ec2-authorize groupname -P protocol (-p portrange
 | -t icmptypecode) [-u sourceuser ...] [-o sourcegroup ...]
 [-s sourceaddress]

Authorizes network traffic to EC2 instances launched with the specified group name.

You can authorize incoming traffic based on a variety of criteria:

• Based on the subnet from which the traffic is originating

• Based on the group membership of the EC2 instance from which the traffic is originating (if

originating from an EC2 instance)

156 A P P E N D I X A

Download at WoweBook.Com

• Based on the protocol (TCP, UDP, ICMP) of the traffic

• Based on the destination port of the traffic

By default, a group allows no traffic to pass to EC2 instances that belong to it (though members may

belong to multiple groups, in which case their membership in other groups may allow it). To get traffic

flowing, you must specifically authorize traffic to flow.

Except when you want to enable traffic to flow from one EC2 group to another, you can control traffic

down to the protocol and port level. If you allow traffic to flow from one group to another, it’s an

all-or-nothing proposition.

Examples
Grant port 80 access to all traffic regardless of source
$ ec2-authorize mydmz -P tcp -p 80 -s 0.0.0.0/0
GROUP mydmz
PERMISSION mydmz ALLOWS tcp 80 80 FROM CIDR 0.0.0.0/0

Grant access to the app server group from the DMZ group
$ ec2-authorize myapp -u 999999999999 -o mydmz
GROUP myapp
PERMISSION myapp ALLOWS all FROM USER 999999999999 GRPNAME mydmz

Grant access to a range of ports from a specific IP address
$ ec2-authorize mydmz -P udp -p 3000-4000 -s 67.202.55.255/32
GROUP mydmz
PERMISSION mydmz ALLOWS udp 3000 4000 FROM CIDR 67.202.55.255/32

ec2-bundle-instance

ec2-bundle-instance instanceid -b s3bucket -p prefix -o accesskey (-c
policy | -w secretkey)

Windows instances only. Bundles your Windows instance and stores it in Amazon S3 to be registered

using ec2-register.

Example
$ ec2-bundle-instance i-12b3ff6a -b mybucket -p myami -o 999999999999 -w
lY1zp/1iKzSAg9B04lQ0T3gMxje7IfnXtN5asrM/dy==
BUNDLE bun-abd5209d8 i-12b3ff6a mybucket myami pending 2008-12-
18T13:08:18+0000 2008-12-18T13:08:18+0000

ec2-cancel-bundle-task

ec2-cancel-bundle-task bundleid

Windows instances only. Cancels a bundle process currently underway.

A M A Z O N W E B S E R V I C E S R E F E R E N C E 157

Download at WoweBook.Com

Example
$ ec2-cancel-bundle-task bun-abd5209d8
BUNDLE bun-abd5209d8 i-12b3ff6a mybucket myami canceling 2008-12-
18T13:13:29+0000 2008-23-18T13:13:29+0000

ec2-confirm-product-instance

ec2-confirm-product-instance productcode -i instanceid

Enables an AMI owner to check whether the specified instance has the named product code attached

to the instance.

Example
$ ec2-confirm-product-instance zt1 -i i-12b3ff6a
ztl i-12b3ff6a false

ec2-create-snapshot

ec2-create-snapshot volumeid

Creates a differential snapshot of the specified volume ID and stores the snapshot in Amazon S3. It is

best to take snapshots of “frozen” filesystems to avoid data integrity concerns. It is OK to begin writing

to the volume again after this command has returned successfully.

Example
$ ec2-create-snapshot vol-12345678
SNAPSHOT snap-a5d8ef77 vol-12345678 pending 2008-12-20T20:47:23+0000

ec2-create-volume

ec2-create-volume (-s size | --snapshot snapshotid) -z zone

Creates a new volume either with the specified volume size or based on the specified snapshot in the

named availability zone. You must specify an availability zone and either a size or a snapshot. The

size parameter is the size in gigabytes.

Examples
Create a new volume of 10 GB
$ ec2-create-volume -s 10 -z eu-west-1a
VOLUME vol-12345678 10 eu-west-1a creating 2008-12-20T20:47:23+0000

Create a volume based on a stored snapshot
$ ec2-create-volume --snapshot snap-a5d8ef77 -z eu-west-1a
VOLUME vol-12345678 10 eu-west-1a creating 2008-12-20T20:47:23+0000

158 A P P E N D I X A

Download at WoweBook.Com

ec2-delete-group

ec2-delete-group group

Deletes the specified security group from your account. You cannot delete a group until all references

to it have been removed (instances in the group and other groups with rules allowing access to this

group).

Example
$ ec2-delete-group mydmz
GROUP mydmz

ec2-delete-keypair

ec2-delete-keypair keypair

Deletes the specified public key associated with the named key pair from your Amazon account.

Example
$ ec2-delete-keypair georgekey
KEYPAIR georgekey

ec2-delete-snapshot

ec2-delete-snapshot snapshotid

Deletes a snapshot from your account.

Example
$ ec2-delete-snapshot snap-a5d8ef77
SNAPSHOT snap-a5d8ef77

ec2-delete-volume

ec2-delete-volume volumeid

Deletes a volume from your account.

Example
$ ec2-delete-volume vol-12345678
VOLUME vol-12345678

ec2-deregister

ec2-deregister imageid

A M A Z O N W E B S E R V I C E S R E F E R E N C E 159

Download at WoweBook.Com

Deregisters a machine image so that you can no longer launch instances from it. You must delete the

AMI from S3 separately in order to free up any space associated with the AMI.

Example
$ ec2-deregister ami-f822a39b
IMAGE ami-f822a39b

ec2-describe-addresses

ec2-describe-addresses [ipaddres1 [...ipaddressN]]

Lists the information associated with the specified elastic IP addresses. If you do not specify any

particular addresses, it will list all IP addresses you have allocated in the current EC2 region.

Examples
SHOW ALL ALLOCATED
$ ec2-describe-addresses
ADDRESS 67.202.55.255 i-12b3ff6a
ADDRESS 67.203.55.255

SHOW A SPECIFIC ADDRESS
$ ec2-describe-addresses 67.202.55.255
ADDRESS 67.202.55.255 i-12b3ff6a

ec2-describe-availability-zones

ec2-describe-availability-zones [zone1 [...zoneN]]

Lists the information associated with the specified EC2 availability zones. If no zone is specified, it will

list all zones associated with the current EC2 region.

Examples
SHOW ALL ALLOCATED
$ ec2-describe-availability-zones
AVAILABILITYZONE us-east-1a available
AVAILABILITYZONE us-east-1b available
AVAILABILITYZONE us-east-1c available

SHOW A SPECIFIC ZONE
$ ec2-describe-availabilty-zones us-east-1a
AVAILABILITYZONE us-east-1a available

SHOW ALL EU ZONES
$ ec2-describe-availability-zones --region eu-west-1
AVAILABILITYZONE eu-west-1a available
AVAILABILITYZONE eu-west-1b available

160 A P P E N D I X A

Download at WoweBook.Com

ec2-describe-bundle-tasks

ec2-describe-bundle-tasks [bundle1 [...bundleN]]

For Windows instances only. Lists the information associated with the specified bundle tasks. If no

specific task is named, the command will list all bundle tasks associated with this account.

Examples
SHOW ALL TASKS
$ ec2-describe-bundle-tasks
BUNDLE bun-abd5209d8 i-12b3ff6a mybucket myami pending 2008-12-
18T13:08:18+0000 2008-12-18T13:08:18+0000
BUNDLE bun-abd5209d9 i-12b3ff7a mybucket myami pending 2008-12-
18T13:08:18+0000 2008-12-18T13:08:18+0000

SHOW SPECIFIC TASK
$ ec2-describe-bundle-tasks bun-abd5209d8
BUNDLE bun-abd5209d8 i-12b3ff6a mybucket myami pending 2008-12-
18T13:08:18+0000 2008-12-18T13:08:18+0000

ec2-describe-group

ec2-describe-group [group1 [...groupN]]

Lists the information associated with the specified security groups. If no groups are specified, then all

groups associated with the account will be listed.

Examples
SHOW ALL GROUPS
$ ec2-describe-group
GROUP mydmz DMZ
PERMISSION mydmz ALLOWS tcp 80 80 FROM CIDR 0.0.0.0/0
GROUP myapp App
PERMISSION myapp ALLOWS all FROM USER 999999999999 GRPNAME mydmz

SHOW A SPECIFIC GROUP
$ ec2-describe-group mydmz
PERMISSION mydmz ALLOWS tcp 80 80 FROM CIDR 0.0.0.0/0

ec2-describe-image-attribute

ec2-describe-image-attribute imageid (-l | -p)

Describes the attributes for a specific AMI. You specify whether you want to see the launch permissions

or the product codes.

Examples
SHOW LAUNCH PERMISSIONS
$ ec2-describe-image-attribute ami-f822a39b -l
launchPermission ami-f822a39b userId 999999999999

A M A Z O N W E B S E R V I C E S R E F E R E N C E 161

Download at WoweBook.Com

SHOW PRODUCT CODE
$ ec2-describe-image-attribute ami-f822a39b -p
productCodes ami-f822a39b productCode zz95xy

ec2-describe-images

ec2-describe-images [imageid1 [...imageidN]] [-a] [-o ownerid] [-x ownerid]

Describes the information associated with a specific image ID or any images that match the specified

parameters. If you specify no parameters at all, the command will list out all images owned by your

account.

Specific options include:

-a

Lists AMIs for which the user has execution rights.

-o ownerid
Lists AMIs belonging to the specified owner or owners. You may also use the special owner IDs:

amazon (for public images), self (referring to your own images), and explicit (referring to the

images for which you have launch permissions).

-x ownerid
Lists AMIs for which the specified owner or owners have launch permissions. In addition to a

standard owner ID, you can specify self to access those images for which you have launch

permissions or all to specify AMIs with public launch permissions.

A particularly useful variant for finding an image to get started with is:

ec2-describe-images -o amazon

Examples
SHOW ALL OWNER IMAGES
$ ec2-describe-images
IMAGE ami-f822a39b myami/myami.manifest.xml 999999999999 available private
zz95xy i386 machine aki-a71cf9ce ari-a51cf9cc

SHOW IMAGES FOR A SPECIFIC USER
$ ec2-describe-images -o 063491364108
IMAGE ami-48de3b21 level22-ec2-images-64/ubuntu-7.10-gutsy-base-
64-20071203a.manifest.xml 063491364108 available public x86_64 machine
IMAGE ami-dd22c7b4 level22-ec2-images-64/ubuntu-7.10-gutsy-base-
64-20071227a.manifest.xml 063491364108 available public x86_64 machine

ec2-describe-instances

ec2-describe-instances [instanceid1 [...instanceidN]]

162 A P P E N D I X A

Download at WoweBook.Com

Lists the information associated with the specified instances. If no specific instance is specified, shows

information on all instances associated with the account.

Examples
SHOW ALL INSTANCES
$ ec2-describe-instances
RESERVATION r-3d01de54 999999999999 default
INSTANCE i-b1a21bd8 ami-1fd73376 pending 0 m1.small 2008-10-
22T16:10:38+0000 us-east-1a aki-a72cf9ce ari-a52cf9cc
RESERVATION r-3d01cc99 999999999999 default
INSTANCE i-ccdd1b22 ami-1fd73376 pending 0 m1.small 2008-10-
22T16:10:38+0000 us-east-1a aki-a72cf9ce ari-a52cf9cc

SHOW A SPECIFIC INSTANCE
$ ec2-describe-instances i-b1a21bd8
RESERVATION r-3d01de54 999999999999 default
INSTANCE i-b1a21bd8 ami-1fd73376 pending 0 m1.small 2008-10-
22T16:10:38+0000 us-east-1a aki-a72cf9ce ari-a52cf9cc

ec2-describe-keypairs

ec2-describe-keypairs [keypairid1 [...keypairidN]]

Lists the information associated with the specified key pair. If no specific key pair is given, it will list

all keys you own.

Example
$ ec2-describe-keypairs
KEYPAIR georgekey 98:21:ff:2a:6b:35:71:6e:1f:36:d9:f2:2f:d7:aa:e4:14:bb:1d:1a

ec2-describe-regions

ec2-describe-regions [region1 [...regionN]]

Lists the information associated with the specified region. If no region is specified, shows all regions.

Example
$ ec2-describe-regions
REGION eu-west-1 eu-west-1.ec2.amazonaws.com
REGION us-east-1 us-east-1.ec2.amazonaws.com

ec2-describe-snapshots

ec2-describe-snapshots [snapshotid1 [...snapshotidN]]

Lists the information associated with the specified snapshot. If no snapshot is specified, shows all

snapshots for the account.

A M A Z O N W E B S E R V I C E S R E F E R E N C E 163

Download at WoweBook.Com

Example
$ ec2-describe-snapshots
SNAPSHOT snap-a5d8ef77 vol-12345678 pending 2008-12-20T20:47:23+0000 50%

ec2-describe-volumes

ec2-describe-volumes [volumeid1 [...volumeidN]]

Lists the information associated with the specified volume. If no volume is specified, shows all volumes

for the account.

Example
$ ec2-describe-volumes
VOLUME vol-81aeb37f 5 snapa5d8ef77 us-east-1a in-use 2008-12-17T22:36:00+0000
ATTACHMENT vol-81aeb37f i-12b3ff6a /dev/sdf attached 2008-12-17T22:36:00+0000

ec2-detach-volume

ec2-detach-volume volumeid [-i instanceid] [-d device] --force

Detaches the specified volume from the instance to which it is currently attached. You should make

sure you have unmounted the filesystem from the instance to which the volume is attached before

you detach it; otherwise, your data will likely be corrupted. If the detach fails, you can try again with

the --force option to force it to occur.

Example
$ ec2-detach-volume
ATTACHMENT vol-81aeb37f i-12b3ff6a /dev/sdf detaching 2008-12-17T22:36:00+0000

ec2-disassociate-address

ec2-disassociate-address idaddress

Disassociates the specified elastic IP address from any instance with which it might currently be

associated.

Example
$ ec2-disassociate-address 67.202.55.255
ADDRESS 67.202.55.255

ec2-get-console-output

ec2-get-console-output instanceid [-r]

Displays the console output from the startup of the instance. With the -r (raw) option, the output

will be displayed without any special formatting.

164 A P P E N D I X A

Download at WoweBook.Com

Example
$ ec2-get-console-output i-b1a21bd8
i-b1a21bd8
2008-12-23T20:03:07+0000
Linux version 2.6.21.7-2.fc8xen (mockbuild@xenbuilder1.fedora.redhat.com) (gcc
version 4.1.2 20070925 (Red Hat 4.1.2-33)) #1 SMP Fri Feb 15 12:39:36 EST 2008
BIOS-provided physical RAM map:
sanitize start
sanitize bail 0
copy_e820_map() start: 0000000000000000 size: 000000006ac00000 end:
000000006ac00000 type: 1
 Xen: 0000000000000000 - 000000006ac00000 (usable)
980MB HIGHMEM available.
727MB LOWMEM available.
NX (Execute Disable) protection: active
Zone PFN ranges:
 DMA 0 -> 186366
 Normal 186366 -> 186366
 HighMem 186366 -> 437248
early_node_map[1] active PFN ranges
 0: 0 -> 437248
ACPI in unprivileged domain disabled
Detected 2600.043 MHz processor.
Built 1 zonelists. Total pages: 433833
Kernel command line: root=/dev/sda1 ro 4
Enabling fast FPU save and restore... done.
Enabling unmasked SIMD FPU exception support... done.
Initializing CPU#0
CPU 0 irqstacks, hard=c136c000 soft=c134c000
PID hash table entries: 4096 (order: 12, 16384 bytes)
Xen reported: 2600.000 MHz processor.
Console: colour dummy device 80x25
Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)
Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
Software IO TLB disabled
vmalloc area: ee000000-f4ffe000, maxmem 2d7fe000
Memory: 1711020k/1748992k available (2071k kernel code, 28636k reserved, 1080k
data, 188k init, 1003528k highmem)

ec2-get-password

ec2-get-password instanceid -k keypair

For Windows instances only. Provides the administrator password from a launched Windows instance

based on the key pair used to launch the instance. There is no SOAP version of this command.

Example
$ ec2-get-password i-b1a21bd8 -k georgekey
sZn7h4Dp8

A M A Z O N W E B S E R V I C E S R E F E R E N C E 165

Download at WoweBook.Com

ec2-modify-image-attribute

ec2-modify-image-attribute imageid -l -a value
ec2-modify-image-attribute imageid -l -r value
ec2-modify-image-attribute imageid -p productcode [-p productcode]

Modifies an attribute for an image. The -l option specifies launch permission attributes, whereas the

-p option specifies product codes.

Examples
Add access
$ ec2-modify-image-attribute ami-f822a39b -l -a 123456789
launchPermission ami-f822a39b ADD userId 123456789

Remove access
$ ec2-modify-image-attribute ami-f822a39b -l -r 123456789
launchPermission ami-f822a39b REMOVE userId 123456789

Add product code
$ ec2-modify-image-attribute ami-f822a39b -p crm114
productCodes ami-f822a39b productCode crm114

ec2-reboot-instances

ec2-reboot-instances instanceid1 [...instanceidN]

Reboots the instances specified on the command line. There is no display for this command, except

when it causes errors.

ec2-release-address

ec2-release-address ipaddress

Releases an address that is currently allocated to you. Once you execute this command, you cannot

get back the released address.

Example
$ ec2-release-address 67.202.55.255
ADDRESS 67.202.55.255

ec2-register

ec2-register s3manifest

Registers the machine image whose manifest file is at the specified location.

Example
$ ec2-register myami/myami.manifest.xml
IMAGE ami-f822a39b

166 A P P E N D I X A

Download at WoweBook.Com

ec2-reset-image-attribute

ec2-reset-image-attribute imageid -l

Resets a launch permission image attribute for the specified machine image.

Example
$ ec2-reset-image-attribute ami-f822a39b -l
launchPermission ami-f822a39b RESET

ec2-revoke

ec2-revoke groupname [-P protocol] (-p portrange | -t icmptypecode)
[-u sourceuser ...] [-o sourcegroup ...] [-s sourceaddress]

Revokes a prior authorization from the specified security group. The options represent the options

used when you created the permission using ec2-authorize. See ec2-authorize for more details.

Example
$ ec2-revoke -P tcp -p 80 -s 0.0.0.0/0
GROUP mydmz
PERMISSION mydmz ALLOWS tcp 80 80 FROM CIDR 0.0.0.0/0

ec2-run-instances

ec2-run-instances imageid [-n count] [-g groupname1 [... -g groupnameN]]
[-k keypair] -d customdata | -f customfile] [-t type] [-z zone]
[--kernel kernelid] [--ramdisk ramdiskid] [-B devicemapping]

Attempts to launch one or more EC2 instances based on the AMI and options specified. The options

are:

-B devicemapping
Defines how block devices are exposed to the instances being launched. You can specify a number

of different virtual names:

• ami: the root filesystem device as seen by the instance

• root: the root filesystem device as seen by the kernel

• swap: the swap device as seen by the instance

• ephemeralN: the Nth ephemeral store

-d customdata
Data to be made available to your instance at runtime. If you need to specify a lot of data, specify

the data in a file and use the -f option.

-f customfile
The name of a file with runtime data to be made available to your instances post launch.

A M A Z O N W E B S E R V I C E S R E F E R E N C E 167

Download at WoweBook.Com

-g groupname
The name of the security group whose rules govern the launched instance(s). You may specify

multiple security groups. If you specify multiple security groups, access to the instance is

governed by the union of the permissions associated with those groups.

-k keypair
The public key for EC2 to place on launched instances at boot.

--kernel kernelid
The kernel ID with which to launch the instances.

-n count
The minimum number of instances to launch with this command. If EC2 cannot minimally

launch the number of instances specified, it will not launch any at all.

--ramdisk ramdiskid
The RAM disk ID with which to launch the instance.

-t type
The Amazon instance type that defines the CPU, RAM, and other attributes of the instance(s)

being launched. As of the writing of this book, valid values are: m1.small, m1.large, m1.xlarge,

c1.medium, and c1.xlarge.

-z zone
The availability zone into which the instance(s) will be launched. If no availability zone is

specified, then the instances will launch into the availability zone EC2 determines to be the best

at the time of launch.

Examples
Launch exactly 1 instance anywhere
$ ec2-run-instances ami-f822a39b
RESERVATION r-a882e29b7 999999999999 default
INSTANCE i-b1a21bd8 ami-f822a39b pending 0 m1.small 2008-12-23T21:37:13+0000 us-
east-1c

Launch at least 2 instances in us-east-1b
$ ec2-run-instances ami-f822a39b -n 2 -z us-east-1b
RESERVATION r-ac82e29b8 999999999999 default
INSTANCE i-b1a21be9 ami-f822a39b pending 0 m1.small 2008-12-23T21:37:13+0000 us-
east-1b
INSTANCE i-b1a21bf0 ami-f822a39b pending 0 m1.small 2008-12-23T21:37:13+0000 us-
east-1b

Launch exactly 1 instance with the specified keypair in the myapp group
$ ec2-run-instances ami-f822a39b -g myapp -k georgekey
RESERVATION r-a882e29b7 999999999999 default
INSTANCE i-b1a21bd8 ami-f822a39b pending georgekey 0 m1.small 2008-12-
23T21:37:13+0000 us-east-1c

168 A P P E N D I X A

Download at WoweBook.Com

ec2-terminate-instances

ec2-terminate-instances

Terminates the specified instance or instances.

Example
$ ec2-terminate-instances i-b1a21bd8
INSTANCE i-b1a21bd8 running shutting-down

Amazon EC2 Tips
We have talked about a number of concepts in this book that left open the question of how
you actually implement those concepts. In this section, I attempt to put together a few recipes
to help you set up and manage your EC2 environments. These tips do not represent the only
way to accomplish any of the tasks they support, so there may be alternatives that better fit
your needs.

Filesystem Encryption

I have recommended the encryption of your Amazon filesystems. Before you decide to encrypt,
you need to balance security needs with filesystem performance. An encrypted filesystem will
always be slower than one that is not encrypted. How much slower depends on which
underlying filesystem you are using and whether you are leveraging a RAID. I generally use
XFS on an encrypted RAID0.

To leverage this tip, you will need to have the cryptsetup package installed. If you want XFS
support, you will also need xfsprogs. Under Debian, you need to execute the following as root:

apt-get install -y cryptsetup
apt-get install -y xfsprogs
echo sha256 >> /etc/modules
echo dm_crypt >> /etc/modules

The following Unix script at launch will set up an encrypted XFS volume for the ephemeral
volume on an Amazon m1.small instance.

enStratus passes in an encryption key via a web service at startup
You can pull the encryption key from startup parameters or, for the
ephemeral store, you can even generate it on-demand as long as you
don't expect the need to support rebooting.
At any rate, the key is temporarily placed in /var/tmp/keyfile
or wherever you like

KEYFILE=/var/tmp/keyfile
Pass in the desired filesystem; if not supported, fall back to ext3
FS=${1}
if [! -x /sbin/mkfs.${FS}] ; then
 FS=ext3
 if [! -x /sbin/mkfs.${FS}] ; then

A M A Z O N W E B S E R V I C E S R E F E R E N C E 169

Download at WoweBook.Com

 echo "Unable to identify a filesystem, aborting..."
 exit 9
 fi
fi
echo "Using ${FS} as the filesystem... "

if [-f ${KFILE}] ; then
 if [[-x /sbin/cryptsetup || -x /usr/sbin/cryptsetup]]; then
 # Unmount the /mnt mount that is generally pre-mounted with instances
 sudo umount /mnt
 # Setup encryption on the target device (in this case, /dev/sda2)
 sudo cryptsetup -q luksFormat --cipher aes-cbc-essiv:sha256 /dev/sda2 ${KFILE}
 if [$? != 0] ; then
 echo "luksFormat failed with exit code $?"
 exit 10
 fi
 # Open the device for use by the system
 sudo cryptsetup --key-file ${KFILE} -q luksOpen /dev/sda2 essda2
 if [$? != 0] ; then
 echo "luksOpen failed with exit code $?"
 exit 11
 fi
 # Format the filesystem using the filesystem specified earlier
 sudo mkfs.${FS} /dev/mapper/essda2
 if [$? != 0] ; then
 echo "mkfs failed with exit code $?"
 exit 12
 fi
 # Remove the current entry in /etc/fstab for /dev/sda2
 sudo perl -i -ane 'print unless /sda2/' /etc/fstab
 # Create a new entry in /etc/fstab (no auto mount!)
 echo "/dev/mapper/essda2 /mnt ${FS} noauto 0 0" | sudo tee -a /etc/fstab
 # Mount the drive
 sudo mount /mnt
 if [$? != 0] ; then
 echo "Remount of /mnt failed with exit code $?"
 exit 13
 fi
 fi
fi

You will need to leave the key file in place unencrypted under this model. enStratus allows
you to delete this file after the script executes because it will pass the key in as needed.

The one weakness with any of these approaches is that an unencrypted version of the key is
stored on the unencrypted root partition, even if for a short time under the enStratus model.
One trick to get around this issue is to do the following:

1. Auto-generate a random key and store it in /var/tmp.

2. Mount the ephemeral store in /mnt as an encrypted device.

3. Erase the auto-generated key.

4. Pass in a permanent key from enStratus (or other tool).

170 A P P E N D I X A

Download at WoweBook.Com

5. Store that in /mnt/tmp.

6. Mount an EBS volume using the permanent encryption key.

7. Delete the permanent encryption key.

8. Use the EBS volume for all critical data.

With this approach, no critical data is hosted on a volume whose key is ever unencrypted,
except at the local operating system level. The storage of the permanent key is on an encrypted
volume that uses a temporary encryption key.

If you really want to go to town on the encryption front, fill up the drive by raw-writing random
data to the drive before putting it into use.

Setting Up RAID for Multiple EBS Volumes

I have seen huge boosts in disk I/O performance by tying several EBS volumes into a RAID0
(striping) array. On the flip side, I would not expect to see tremendous redundancy benefits
from RAID1 (mirroring), since all EBS volumes must be in the same availability zone as the
instance to which they are attached. Unfortunately, my experiences are in line with Amazon
expectations, which have shown that mirroring of EBS volumes erases most performance gains
of striping, so RAID5 and RAID10 end up being pointless.

To be fair, I have not done extensive benchmarking of all the options using a variety of
filesystems. I generally stick with a single encrypted EBS volume on each instance, except when
performance is critical. When performance is critical, I will join the volumes into a RAID0 array.
I may or may not encrypt that RAID0 array, depending on the balance between security and
disk performance.

When designing your RAID0 setup, keep in mind that the parallel writes to the disk that make
RAID0 so fast have an upper limit at the data exchange rate that connects your instance to
your EBS volumes. The optimal number of drives and sizes of those drives will therefore
depend on the nature of your application.

I use the mdadm package to set up my RAIDs:

sudo apt-get install -y mdadm

The following script will create a RAID0 with two drives:

SVCMOUNT=/mnt/svc
Pass in the desired filesystem; if not supported, fall back to ext3
FS=${1}
if [! -x /sbin/mkfs.${FS}] ; then
 FS=ext3
 if [! -x /sbin/mkfs.${FS}] ; then
 echo "Unable to identify a filesystem, aborting..."
 exit 9
 fi
fi
echo "Using ${FS} as the filesystem... "

A M A Z O N W E B S E R V I C E S R E F E R E N C E 171

Download at WoweBook.Com

ISNEW=${2}

ARGS=($@)
DEVICELIST=${ARGS[@]:2}
DEVARR=($DEVICELIST)
DEVCOUNT=${#DEVARR[*]}

if [! -d ${SVCMOUNT}] ; then
 sudo mkdir ${SVCMOUNT}
 sudo chmod 775 ${SVCMOUNT}
fi

Verify you have devices to mount
if [${DEVCOUNT} -gt 0] ; then
 # If more than one, set up a RAID0
 if [${DEVCOUNT} -gt 1] ; then
 map=""
 for d in ${DEVICELIST}; do
 map="${map} /dev/${d}"
 done
 # Create the RAID0 device s /dev/md0
 yes | sudo mdadm --create /dev/md0 --level 0 --metadata=1.1 --raid-devices ${DEVCOUNT} $map
 if [$? != 0] ; then
 exit 20
 fi
 # Configure the RAID in case of reboot
 echo "DEVICE ${DEVICELIST}" | sudo tee /etc/mdadm.conf
 sudo mdadm --detail --scan | sudo tee -a /etc/mdadm.conf
 # Are these newly created volumes or remounts of old ones/snapshots?
 if [${ISNEW} == "true"] ; then
 # Make the filesystem
 sudo mkfs.${FS} /dev/md0
 if [$? != 0] ; then
 exit 24
 fi
 echo "/dev/md0 ${SVCMOUNT} ${FS} noatime 0 0" | sudo tee -a /etc/fstab
 else
 echo "/dev/md0 ${SVCMOUNT} ${FS} noatime 0 0" | sudo tee -a /etc/fstab
 fi
 else
 # Just one volume, not a RAID
 if [${ISNEW} == "true"] ; then
 # New volume, create the filesystem
 sudo mkfs.${FS} /dev/${DEVICELIST}
 if [$? != 0] ; then
 exit 29
 fi
 echo "/dev/${DEVICELIST} ${SVCMOUNT} ${FS} noauto 0 0" | sudo tee -a /etc/fstab
 else
 echo "/dev/${DEVICELIST} ${SVCMOUNT} ${FS} noauto 0 0" | sudo tee -a /etc/fstab
 fi
 fi
 sudo mount ${SVCMOUNT}
fi

172 A P P E N D I X A

Download at WoweBook.Com

A P P E N D I X B

GoGrid

Randy Bias

THERE IS MORE THAN ONE WAY TO BUILD A CLOUD INFRASTRUCTURE. Amazon Web Services
(AWS) represents the “service infrastructure” approach, offering customers a number of
customized, nonstandard, but highly scalable services to rebuild an infrastructure in a totally
virtual environment. GoGrid represents more of an industry-standard approach that offers a
very familiar data center-like environment, but in the cloud.

For many customers, the GoGrid approach is easier and more comfortable because it reuses
traditional idioms and technology, such as VLANs (virtual LANs), network blocks, hardware
appliances (load balancer and firewall), and file storage (SAN or NAS, storage area networks
and network attached storage, respectively). This approach represents what we call a
cloudcenter : a data center in the clouds.

Types of Clouds
Infrastructure clouds (aka “Infrastructure-as-a-Service,” or IaaS) can be built primarily in two
ways: service infrastructures or cloudcenters. Both allow all of the capabilities one expects from
IaaS:

• Scale on demand

• Pay-as-you-go

173

Download at WoweBook.Com

• Conversion of capital expenditures (CapEx) to operational expenditures (OpEx)

• Programmatic (API) and graphical user interfaces (GUI)

• Basic infrastructure: storage, servers, network, power, and cooling

Although both provide the same basic value, these two approaches differ significantly in
approach:

Service infrastructures
This is the approach made familiar by AWS, and described in much of this book. Service
infrastructures are essentially custom web services “in the cloud.” These can be used
individually or composited together to deliver a web application or do batch processing.
For example, Amazon offers servers, storage, databases, queuing/messaging, payment
processing, and more. Every one of these web services is a unique and custom solution.
Storage using S3 uses the S3 protocol and storage mechanisms. The AWS SQS queuing
service uses its own nonstandard custom protocol and message format. The same goes for
SimpleDB, their database service. These services were designed in a custom manner to
allow Amazon to scale to 50,000+ servers and thousands of products. They are being
repurposed as publicly consumable web services that AWS customers consume for their
own uses within their business models.

Cloudcenters
Most AWS competitors use this approach. Its methodology is to provide standard data
center services using standard technology and protocols, but in the cloud. Storage is
available via familiar protocols, such as SMB/CIFS and NFS. Databases are provided using
standard SQL and RDBMS. Firewalls and load balancers are based on hardware appliances
instead of custom distributed and configured firewall software.

At the end of the day, the choice is between a custom infrastructure with its own protocols
and standards you’ll need to conform to, or a more traditional data center-like service that has
the same benefits, but is delivered using industry standards.

Cloudcenters in Detail
GoGrid is the first and largest U.S. cloudcenter and is popularizing this approach. (Other
cloudcenter companies include FlexiScale, ElasticHosts, and AppNexus.) Among its primary
advantages is the ability to directly translate skillsets, existing infrastructure, and projects to
the more flexible cloud environment. GoGrid’s approach will also eventually make so-called
“cloud-bridging”—connecting and integrating your internal data center to external clouds—
much easier.

174 A P P E N D I X B

Download at WoweBook.Com

Data Centers in the Clouds

Traditional data centers are composed of the following elements:

• Perimeter security using a hardware firewall and intrusion detection system

• Load balancing using a hardware load balancer

• Network segmentation using differing network blocks and VLANs

• A combination of physical hardware and virtual guest operating systems

• Filesharing using (NAS)

• Block storage using (SANs)

• Data center support services: DNS, DHCP, server imaging, inventory management, asset
management, and monitoring

• Power, cooling, bandwidth, and backup for all of these support services

• 24/7 on-site support and staff

Cloudcenters are very similar to traditional data centers, offering most of these services with
only small variations to provide them in a multitenant fashion. In addition, cloudcenters,
unlike normal data centers, deliver direct cost efficiencies along with indirect human
efficiencies through the GUI and API.

GoGrid Versus Traditional Data Centers

The primary downside of traditional data centers is the need to build them out to maximum
capacity. You, as the IT owner, are required to forecast correctly and to build and manage your
capacity in-house.

Cloudcenters allow reusing your current in-house data center expertise with external cloud
providers. Knowledge and expertise reuse means less time spent learning new paradigms and
more time on driving real business objectives. Retain control while gaining the virtues of clouds
in terms of OS licensing, CapEx avoidance, forecasting, and capacity management.

Additionally, all of the benefits of cloud computing are available to you, such as adding capacity
on-demand, automating workload elasticity, and paying only for what you use. This allows IT
staff and managers to optimize their infrastructure costs both internally and externally by
moving elastic workloads to the cloud and expanding/contracting usage as necessary.

Horizontal and vertical scaling

Deploying on GoGrid is like deploying in your internal data center, but with many new tools
that can accelerate and smooth your operation processes. Like any other cloud, you have the
option to “scale out” (horizontal scaling). In contrast to most other clouds, you also have the
option to “scale up” (vertical scaling) using not just virtualized cloud instances, but real
dedicated physical hardware. This is similar to a regular data center, where there is usually a

G O G R I D 175

Download at WoweBook.Com

mix of virtual and physical servers. You can get direct access to physical hardware with lots of
RAM, high-speed direct-attached-storage (DAS), and many dedicated cores, all on the same
virtual private network.

Use the right tool for the job: virtual servers for stateless workloads (centralizing processes but
storing no data) that you can scale out easily and physical servers for stateful workloads
(manipulating data in a persistent manner, such as in a database) that are easier to scale up.
Here is the reasoning behind the choice between these options:

Scaling out (horizontal)
It’s easiest to scale out for servers and use cases that are relatively stateless, such as web
servers, application servers, and batch processing. With these kinds of workloads, adding
an additional server usually requires little or no additional configuration or architecture
work. Simply adding the additional servers allows you to add more capacity.

Scaling up (vertical)
In contrast, scaling up is best for stateful applications and workloads such as databases and
fileservers. In these cases, simply adding additional servers does not directly translate into
more capacity. Usually you will need to do some significant reconfiguration, change your
architecture, or at least automatically balance the state data across new servers. The
majority of your data is in these servers, so rebalancing or synchronizing terabytes of data
dynamically is a nontrivial task. This is why it is usually desirable to simply use bigger
servers rather than more servers. It’s also why these servers tend not to be dynamic in
nature, even in clouds.

This is why GoGrid supports both dimensions of scale. It’s not always sufficient to scale out,
and scaling up is a viable and important scaling tactic. Amazon recognizes this, and
consequently provides different server sizes in AWS. Virtualization, however, is inherently a
strategy for making a single server “multitenant,” meaning that it holds multiple customers or
applications. If a part of your application can use all of the capacity of a modern physical server,
it makes no sense to run that application in a virtual server. Virtualization in this case adds
unnecessary overhead, and if you need more computing power or memory than the cloud
offers, you have to twist around your architecture to scale out horizontally.

On the other hand, most applications will hit a scale-up constraint at some point, and then
you will be forced to scale out. You will need to measure demand and match capacity to it in
either scaling model. But with Moore’s Law still in full effect, it will be a long time before
physical hardware is not a valid scale-up strategy for most applications.

GoGrid deployment architectures

A typical GoGrid deployment looks like one in your own data center (Figure B-1).

176 A P P E N D I X B

Download at WoweBook.Com

In typical physical data centers, the application servers face the Internet to interact with the
users, while the backend servers are protected by an extra DMZ-like layer and all systems
securely share a NAS. As in a traditional data center, there are two network segments (VLANs),
one for the public “frontend” and one for the private “backend,” which uses private IP addresses
(RFC1918). Just like in your data center, there is a NAS (GoGrid Cloud Storage) for use with
home directories, backups, archives, and related storage needs.

Scaling up on GoGrid does not look very different from scaling out, except that the all-
important high-performance databases run on dedicated physical hardware, as shown in
Figure B-2.

Focus on Web Applications

The cloudcenter architecture is friendlier for web applications than for batch processing
applications, which may not need all of the traditional data center infrastructure, such as
firewalls, load balancers, and VLANs. Most batch-processing applications do well in utility and
grid computing environments. GoGrid can also be used for batch processing, and although
batch processing is an important component of many web applications, we optimize the
environment for your core transactional web application, which we believe is far more
important.

Load
balancer

Firewall

Database
servers

Network
attached

storage (NAS)

Virtualization
cloud

Storage
cloud

Web and
application
servers

Public network

Internal network

FIGURE B-1. Roles of virtualization and the cloud in GoGrid

G O G R I D 177

Download at WoweBook.Com

Comparing Approaches
When comparing cloudcenters (GoGrid) to service infrastructures (AWS), it’s important to
remember both the practices of traditional data centers and the kind of application you are
deploying.

Side-by-Side Comparison

It may help to look at traditional data centers, cloudcenters, and service infrastructures
side-by-side. Table B-1 lists some of the areas of functionality for each type of infrastructure
and how they compare.

Load
balancer

Firewall

Database
servers

Network
attached

storage (NAS)

Direct
attached

storage (DAS)

Direct
attached

storage (DAS)

Virtualization
cloud

Physical
server
cloud

Storage
cloud

Web and
application
servers

Public network

Internal network

FIGURE B-2. Role of physical hosting in GoGrid

178 A P P E N D I X B

Download at WoweBook.Com

TABLE B-1. Functions and capabilities of clouds

Functionality

Traditional data

center GoGrid (cloudcenter) Amazon (service infrastructure)

Firewall Perimeter hardware

firewall

Perimeter hardware

firewall (Q1 2009 release)

Custom distributed software firewall

Load balancer Hardware load

balancer

Hardware load balancer Roll-your-own software load

balancer (possible 2009 release of

custom load balancer service)

Network isolation VLAN VLAN Faux “VLAN” separation using

distributed software firewall

Private networks Yes (VLAN) Yes (VLAN) No

Network protocols No limitations No limitations Restricted; no multicast, no

broadcast, GRE and related may not

work

OS choices Unlimited Some limits Some limits

DNS Yes; managed

in-house

Yes; managed by GoGrid No

Persistent local storage Yes Yes No

Persistent network

storage

Yes Yes Yes

Mixed virtual and

physical servers

Yes Yes No

As you can see, cloudcenter-style cloud architectures are very similar to traditional data
centers.

Real-Life Usage

The differences between cloudcenters and service infrastructures will become apparent the
minute you attempt to try both GoGrid and AWS.

With AWS (service infrastructure model), little of your current in-house expertise in
networking or storage is relevant. You will need to learn new skills to manage S3 and even
extend your server system administration skills to include managing EC2’s additional server
paradigms, such as runtime metadata, the lack of multicast and broadcast network traffic,
server groups, and their custom distributed software firewall.

G O G R I D 179

Download at WoweBook.Com

In contrast, GoGrid’s approach (cloudcenter model) is very similar to using the console of
VMware VirtualCenter or another virtualization management system. In addition to servers,
you can control your network, DNS, storage, load balancers, and soon firewalls through the
same integrated UI.*

With either system, you’ll be able to get the standard cloud computing benefits of scaling on
demand and paying as you go.

What’s Right for You?
Ultimately, the right choice for you will depend on your application, business needs, and the
traditional “build versus buy” factors. When considering the buy option and comparing that
with cloud computing solutions, you will evaluate whether it’s important to focus your efforts
on adapting to the custom idioms of different service infrastructures, or if it’s better to use a
cloud that looks more like what you are used to, but in the cloud.

Randy Bias is VP technology strategy of GoGrid, a division of ServePath. He is a recognized
expert in the field of clouds and data center infrastructure, with more than 20 years of
experience with ISPs, hosting providers, and large-scale infrastructure. He writes frequently
on infrastructure and cloud computing at his personal blog: http://neotactics.com/blog.

* The GoGrid release of hardware firewall support is slated for 2009.

180 A P P E N D I X B

Download at WoweBook.Com

http://neotactics.com/blog

A P P E N D I X C

Rackspace

Eric Johnson

RACKSPACE IS PROBABLY THE BEST-KNOWN COMPANY when it comes to traditional hosting
services for corporations. Its roots lie in managed hosting of physical servers and its
trademarked Fanatical Support, allowing most customers to rely on its technology experts for
stability and performance. Rackspace’s customers range from one-server configurations to
complex configurations spanning hundreds of servers and high-performance network gear.

But Rackspace is fully aware of the trend in this industry, as demonstrated by Amazon.com’s
EC2 and S3, to move away (at least partially) from dedicated physical servers into the “cloud,”
where some customers are comfortable running in a shared environment.

Rackspace seeks to provide a full suite of options for customers, ranging from dedicated physical
servers to complete virtual servers, along with “hybrid” environments that are a mix of the two.

Rackspace’s Cloud Services
Rackspace’s Cloud Division is the umbrella group that builds and delivers Rackspace’s core
cloud technologies to customers. By combining product offerings built at Rackspace, a few key
company acquisitions, and its existing managed hosting offerings, Rackspace intends to provide
a comprehensive offering. Customers can range from small startups in a complete virtual/cloud
environment up to complex physical servers, and anywhere in between.

181

Download at WoweBook.Com

Many current Rackspace customers have begun to see advantages to using cloud services. By
developing and offering cloud services within Rackspace, customers have the advantage of a
single vendor relationship, fully integrated technologies, and, in many cases, performance
benefits from having their physical servers located within the same data centers as their cloud
services.

Cloud Servers

In October 2008, Rackspace acquired Slicehost (http://www.slicehost.com), a leader in the
Linux virtual server hosting market. Mosso, a subsidiary of Rackspace, will be leveraging this
technology to develop Cloud Servers, an offering similar to Amazon’s EC2.

As outlined in this book, an attractive use of EC2 is to move your dedicated physical servers
into the cloud and replace them with virtual EC2 instances. Arguably, EC2 is more attractive
to customers that need temporary computing power or the ability to grow and shrink their
configuration as needs demand. Slicehost, in contrast, was built specifically for customers
looking at less-expensive dedicated hosting, and provides true virtual server hosting. The
Slicehost offering is designed specifically for dedicated 24/7/365 hosting and utilizes host
servers with RAID(1+0), redundant power supplies, Internet backbone providers, etc.

Over the coming year, the core Slicehost technology will be combined with other features to
provide customers with dynamic abilities that are similar to those described in this book for
Amazon’s EC2. Slicehost as a company will remain a standalone entity and continue to
improve and expand its product portfolio. The Cloud Servers product built with Slicehost
technology will consist of:

• Custom images and image repositories

• Programmer APIs

• Static IP addresses

• Utility-based pricing

• Microsoft Windows support

• The traditional Rackspace 24/7 Fanatical Support

Cloud Servers will also serve as a dynamic resource that Rackspace’s managed hosting
customers can tap into when they need extra computing power. This “hybrid” capability will
provide the best of both worlds and allow customers to temporarily spin-up virtual nodes for
data processing or for “burst” demand.

One major way Rackspace customers can benefit from Cloud Servers will be to spin-up
environments that duplicate their physical configuration almost instantaneously. These
additional environments can be used for testing, QA, development, change reviews, etc. They
can be brought up for a limited time and then powered down again until the next need arises.

182 A P P E N D I X C

Download at WoweBook.Com

http://www.slicehost.com

Cloud Files

Cloud Files is a storage service very similar to Amazon’s S3 system, described earlier in this
book. In early 2008, Cloud Files began a private Beta, and in October 2008 it entered into full
public Beta. Like S3, Cloud Files is not intended as a direct replacement for traditional storage
solutions, but offers the following features:

• Organize data (Objects) into storage compartments called Containers, which are
nonnested (i.e., nonhierarchical).

• Objects can range in size from zero bytes up to 5 GB.

• Custom metadata can be associated with Objects.

• Customers can create an unlimited number of Objects and Containers.

• All features and functionality are accessible through a web interface and programmer APIs
(ReST web service, PHP, Python, Ruby, Java, C#/.NET).

• Services can be utilized on a pay-as-you-go basis, eliminating the need for over-buying/
under-utilizing storage space.

A good use-case for this type of storage system is for storage web content (images, video,
JavaScript, CSS, etc.). Cloud Files has the added benefit of publishing that content behind
a proven, industry-leading Content Distribution Network via Limelight Networks’ infra-
structure. This truly makes CDN easy for the novice and affordable for everyone. Users simply
need to create a Container, upload their data, mark the Container “public,” and combine the
Container’s CDN-URI with the Object name to serve it over the CDN.

Cloud Files also shines as an unlimited data store for backups and data archives. You may be
one of the few users that performs full backups of your personal computer, but chances are
you do that to an external drive or DVD media. That backup data is physically near the
computer and will be lost in the event of a fire or other site disaster. Backing up to Cloud Files
ensures that you have cheap “infinite” storage that’s accessible anywhere you have an Internet
connection.

Like Amazon’s S3, Cloud Files is “developer friendly.” It provides a RESTful web services
interface with APIs for several popular languages. The data stored in the system (Objects) can
include custom metadata, which is commonly used to set user-defined attributes on those
Objects. For example, uploaded photos could include metadata about which photo album they
belong to.

Cloud Sites

Although application hosting is not covered in this book, a summary of Rackspace’s cloud
offerings is not complete without some mention of Cloud Sites. Originally developed by Mosso,
a subsidiary Rackspace group, the original product offering has evolved into an automatically

R A C K S P A C E 183

Download at WoweBook.Com

scalable web platform hosting solution in a LAMP (Linux, Apache, MySQL, PHP/Perl/Python)
stack, Microsoft Windows (.NET, ASP, SQL Server) stack, or both.

Amazon’s EC2, Slicehost, and Cloud Servers require customers to do all their own server and
application configuration and management. If all you plan to do is run a website in a traditional
web stack, Cloud Sites handles the backend management so that you need only focus on your
site. The Cloud Sites technology even automatically scales the site(s) as demand increases or
decreases.

Fully Integrated, Backed by Fanatical Support
In 2009, these discrete services will be fully integrated to provide a robust cloud offering to
Rackspace customers. They will have the option of mixing physical and virtual servers,
“infinite” storage, and fast CDN-enabled websites that automatically scale with demand.

Furthermore, at the end of the day, Rackspace is a service company, employing expert
technology professionals to provide Fanatical Support for all of these new technologies.

Eric Johnson, or “E. J.” as he is better known, is the software/product development manager
for Rackspace’s Cloud Files storage system. His after-hours job is working with and managing
the senior engineers within Racklabs, Rackspace’s Research and Development group.

For the last 15 years, E. J. has worked solely with open source technologies in various roles,
including Unix system administration, networking, DBA, and software development. He has
performed these functions in the airline and aerospace industries. Over the years, he has
contributed his time to the open source community by supplying patches for SSH, being a
package maintainer for Arch Linux, and authoring technical guides on DNS/Bind.

E. J. holds a B.S. in electrical engineering from Drexel University in Philadelphia, Pennsylvania,
and an M.S. in computer science from Rensselaer Polytechnic Institute in Troy, New York. He
currently lives in San Antonio, Texas, with his wife, Julie, son Tate, and a second son due in
April 2009.

184 A P P E N D I X C

Download at WoweBook.Com

I N D E X

Numbers
128-bit values, 92
21CFT11 (Title 21 CRF Part 11 of the Federal Code

of Regulations), 105
64-bit integers, 93

A
Allspaw, John, 137
Amazon

CloudFront, 7, 19, 23
Elastic Cloud Compute (see EC2)
geographic redundancy and, 128
machine image (see AMI)
MySQL, machine images, supporting, 79
Simple Storage Service (see S3)
SimpleDB, 19, 23
SQS (Simple Queue Service), 19, 23
Web Services, 26 (see AWS)

AMI (Amazon Machine Image), 20, 30, 32
data security, 75
management, 45

antivirus protection, 114
application architectures, 7–10
application server recovery, 134
AppNexus, 18
architectures (application), 7–10
AV (antivirus) systems, 114
availability, 54–61

expected, 58–60
availability of the cloud, 54
availability zones for EC2, 30, 39
AWS (Amazon Web Services), 18–24, 31

GoGrid and, 173
service levels, 57

B
backups

database, 94–97
encrypting, 102

management, 123–128
security, 127

bankruptcy of providers, 100
Bastille, 33, 76

system hardening, 114
BitTorrents, 27
block storage, 20

performance constraints and, 62
volumes for EC2, 30

browsers, 2
SaaS and, 3

buckets (S3), 21, 25
naming, 27

C
-c certificate option, 154
capacity planning, 137–145
CapEx (conversion of capital expenditures), 174
capital costs, 13, 52
CDN (content distribution network), 23
centralized OSSEC profile, 115
Cleversave storage, 21
cloud computing, 1
“cloud infrastructure”, 25
cloudbursting, 17
cloudcenters, 173
CloudFront (Amazon), 7, 19, 23
clustering, 61, 87–92, 125
command-line tools, 26, 31, 153–169
compliance, 103–106
comprehensive approaches to AMIs, 80
compromises, detecting, 118
configuration data (runtime), 123
--connection-time option, 154
content distribution network (see CDN)
conversion of capital expenditures, 174
cost comparisons, 14, 49–51
cost of capital, 52
CPU-hours, 47
credential management, 117

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

185

Download at WoweBook.Com

credit card data, 81–84
CRM (customer relationship management), 3
cryptsetup package, 169
customer relationship management (see CRM)

D
data security, 99–106

AMI, 75
data segmentation, 116
data storage in EC2, 40–45
database management systems (see DBMSs)
database masters, 88
databases, 23, 44

backups, 94–97
management, 87–97
persistent data and, 125
primary key management and, 92–94
recovery, 134
stored procedures, 70

DBMSs (database management systems), 88
deadlocks, 73
--debug option, 154
decryption

keys, 76
passwords, 103

del command (s3cmd), 28
denial-of-service attacks, 110
depreciable assets, 14
depreciation schedule, 52
Directive 95/46/EC (EC Directive on Data

Protection), 104
disaster recovery, 65, 119–135

management of, 132–135
Dispersed Storage, 22
DMZ security groups, 106
dump backups (database), 95
dynamic scaling, 145

E
EBS (elastic block storage), 41

RAID, setting up for, 171
EC Directive on Data Protection (Directive 95/46/

EC), 104
EC2 (Amazon Elastic Cloud Compute), 20, 29–46

access, 31
data storage in, 40–45
encrypting filesystems and, 102
security groups, 37–39

ec2-add-group command, 154
ec2-add-keypair command, 155
ec2-allocate-address command, 155
ec2-associate-address command, 156
ec2-attach-volume command, 156
ec2-authorize command, 37, 156

ec2-bundle-instance command, 157
ec2-cancel-bundle-task command, 157
ec2-confirm-product-instance command, 158
ec2-create-snapshot command, 43, 158
ec2-create-volume command, 158
ec2-delete-group command, 159
ec2-delete-keypair command, 159
ec2-delete-snapshot command, 159
ec2-delete-volume command, 159
ec2-deregister command, 160
ec2-describe-addresses command, 160
ec2-describe-availability-zones command, 160
ec2-describe-bundle-tasks command, 161
ec2-describe-group command, 161
ec2-describe-image-attribute command, 161
ec2-describe-images command, 32, 162
ec2-describe-instances command, 34, 163
ec2-describe-keypairs command, 163
ec2-describe-regions command, 163
ec2-describe-snapshots command, 44, 163
ec2-describe-volumes command, 42, 164
ec2-detach-volume command, 164
ec2-disassociate-address command, 164
ec2-get-console-output command, 164
ec2-get-password command, 165
ec2-modify-image-attribute command, 166
ec2-reboot-instances command, 166
ec2-register command, 166
ec2-release-address command, 166
ec2-reset-image-attribute command, 167
ec2-revoke command, 167
ec2-run-instances command, 35, 167

-k option, 36
ec2-terminate-instances command, 169
eight Amazon medium configuration, 151
elastic block storage, 40 (see EBS)
Elastic Cloud Compute (Amazon) (see EC2)
Elastic Compute Cloud (Amazon), 1
Elastic IP addresses, 30
ElasticFox (Firefox), 31
encryption, 100, 102

credit cards, 82
filesystems and, 169

enStratus, 113
ephemeral instance storage, 40
ephemeral storage, 20
EU privacy standards, 84
eu-west-1 zone, 130
expected demand, 138
expiration dates (credit cards), 82
export backups (database), 95

F
filesystem backups

database, 95

186 I N D E X

Download at WoweBook.Com

encrypting, 102, 106
firewalls, 37, 106–110
fixed data, 123
FTP, 106

G
geographic redundancy, 128–131
get command (s3cmd), 28
globally unique primary keys, 92
GoGrid, 85, 173–180

load balancers and, 133
organizational redundancy and, 131

Google
App Engine, 17
availability and, 56
Gmail, 1

grid computing, 7–9
GUI (graphical user interfaces), 174

H
Hammond, Eric, 33
hardware, 4–7

virtualization, 6
--header option, 154
Health Insurance Portability and Accountability

Act (see HIPAA)
HIDS (host intrusion detection system), 115
high availability of systems, 54
HIPAA (Health Insurance Portability and

Accountability Act), 104
horizontal scaling, 175
host intrusion detection system (see HIDS)
host security, 113–118
HTTP/HTTPS access, 38

firewalls and, 106

I
IaaS (Infrastructure as a Service), 17, 173
independent nodes, 61
Infrastructure as a Service (see IaaS)
instance descriptions, 34
instances (EC2), 29

access to, 35
internal IT infrastructure, 11
intrusion detection, 110–113
IP addresses, 30

static, 39
IPv6 addresses, 40
issues in cloud computing, 105
IT infrastructure, options for, 11–13

J
Java, 69

K
-K privatekey option, 154
keys

Amazon, 75
SSH, 35

L
lawsuits as a security concern, 64, 99
legal implications, 63
licenses (software), 47–49
Linux, 48, 77

EBS, using, 44
load, 141

balancers (see load balancers)
load balancers, 111

recovery, 133
local storage, 62
locks (database), 126

M
machine image design, 75–80
managed services, 11
master-slave replication, 125
masters (database), 89
mb command (s3cmd), 27
mdadm package, 171
mean time between failures (see MTBF)
memory locks, problems with, 69
Microsoft, 48

Azure, 19
minimalist approaches to AMIs, 79
/mnt partition, 102
monitoring cloud infrastructure, 132, 145
Morph, 145
MTBF (mean time between failures), 9
multimaster replication, 125
multitenant applications, 3
MySQL, 44, 76

backups, 95
machine images and, 78
persistent data and, 125
software licenses and, 48
stored procedures and, 70

mysqldump, 95

N
naming conventions of buckets, 27
NAS (network attached storage), 175
Netscape, 1
network intrusion detection systems (see NIDS)
networks

intrusion detection, 110–113
protecting, 101

I N D E X 187

Download at WoweBook.Com

encrypting traffic and, 102
security, 106–113

NIDS (network intrusion detection systems), 110
nonsensitive customer information, 84

O
on-demand availability, 3
one Amazon extra-large configuration, 151
open source software, 48
operating systems, 2

machine images and, 76
OpEx (operational expenditures), 174
organizational redundancy, 131
OSSEC detection system, 115
outages (service), 55

P
P2P (peer-to-peer), 27
PaaS (Platform as a Service), 17
passwords, encrypting, 103
“pay for what you use” model, 13
Payment Card Industry Data Security Standard

(PCI), 104
payment terms, 3
PCI (Payment Card Industry Data Security

Standard), 104
peer-to-peer (P2P), 27
performance, 54, 61

constraints, 62
replication for, 91

persistent cloud storage, 40
persistent data, 123, 125
persistent internal storage, 20, 25, 87
PGP, 102

backup security and, 127
PHP, 77
physical storage systems, 6

database servers and, 87
Platform as a Service (see PaaS)
platforms for developers, 67
port scans, 110

Amazon cloud and, 110
present values, 53
primary key management, 92–94
privacy design, 80–87

EU privacy standards, 85
private clouds, 18
private IP addresses, 39
proactive scaling, 145

managing, 148
public IP addresses, 39
put command (s3cmd), 28
Python programming language, 18

stored procedures and, 71

R
Rackspace, 85, 131, 181–184
RAID, 171
RAM hours, 49
random identifiers for primary keys, 94
reactive scaling, 145

managing, 148
Recovery Point Object (see RPO)
Recovery Time Objective (see RTO)
--recursive option (s3cmd), 28
Red Hat Enterprise Linux, 48
redundancy, 55, 120

geographic, 128–131
organizational, 131

--region option, 154
regulatory and standards compliance, 103–106
regulatory implications, 63
reliability, 54, 60
replication, 87–92
--request-timeout option, 154
reservations, 34
REST, 22, 26
RightScale, 113, 145
risk profile for S3, 64
ROI analysis, 51–53
RPO (Recovery Point Object), 120
RTO (Recovery Time Objective), 120

geographic redundancy and, 128
“running” states of instances, 35
runtime configuration data, 123

S
S3 (Amazon Simple Storage Service), 7, 19, 21, 25–

29
data storage and, 41
performance constraints and, 62
risk profile for, 64

s3cmd command-line client, 26
SaaS (Software as a Service), 2–4, 11
SalesForce.com, 3
SANs (storage area networks), 175
Sarbanes-Oxley (see SOX)
scale, 142
scaling out (horizontal), 176
scaling up (vertical), 176
scaling vertically, 150
security, 63–65, 82, 99–118

backups, 127
data, 99–106
firewall rules and, 106–110
groups for EC2, 30, 37–39
host, 113–118
networks, 106–113

server farms, 8

188 I N D E X

Download at WoweBook.Com

servers
failing, 74
network security and, 106
operating on, 4
recovery, 134

service level agreements (see SLAs)
service outages, 55
SETI@home, 7
sharding, 74
--show-empty-fields option, 154
Simple Queue Service (see SQS)
Simple Storage Service (Amazon) (see S3)
SimpleDB (Amazon), 19, 23
SLAs (service level agreements), 54
slaves (database), 89, 125
snapshots, 30, 124

EBS, 43
SOAP, 26
software, 2–4
Software as a Service (see SaaS)
software licenses, 11, 47–49
SOX (Sarbanes-Oxley), 103
SQS (Amazon Simple Queue Service), 19, 23
SSH

firewalls and, 108
keys, 35

standalone OSSEC profile, 115
standards compliance, 103–106
standards implications, 63
static IP addresses, 39
storage (cloud), 6

EC2 and, 40–45
storage area networks (see SANs)
storage systems, 21

S3, 25–29
stored procedures, 70
subpoenas, exposing data, 64, 76, 101
Sun, 48
sunk costs, 50
synchronized keyword (Java), 69
system hardening, 113
system state, 68–74

T
TAR files, 124
“throwing” data, 6
transaction log backup (database), 95
transaction systems, 9
transactional integrity of databases, 70
transactions, protecting, 68–74
transient data, 123
two Amazon large configuration, 151

U
-U url option, 154
Ubuntu, 33
unique random keys, 93
up-front costs, 50
Urquhart, James, 16, 19
us-east-1 zone, 130
us-east-1a zone, 34, 39, 101
usage-based costs, 48

V
-v option, 154
Valtira, 48, 142
vendors (software), 48
Vertica, 48
vertical scaling, 175
virtualization (hardware), 6
virtualized environments, 48

cost comparisons and, 49
database consistency and, 87
machine image design and, 75

viruses, 114
VMware, 6
volume setup (EBS), 42–45

snapshots, 43
VPN, 108

W
web application design, 67–75

X
Xen environments, 6, 20, 58

encrypting filesystems and, 102
xfsprogs program, 169
xfs_freeze command, 44

Z
ZIP files, 124

I N D E X 189

Download at WoweBook.Com

Download at WoweBook.Com

A B O U T T H E A U T H O R

George Reese is the founder of two Minneapolis-based companies, enStratus Networks

LLC (maker of high-end cloud infrastructure management tools) and Valtira LLC (maker

of the Valtira Online Marketing Platform). During the past 15 years, George has authored

a number of technology books, including O’Reilly’s MySQL Pocket Reference, Database

Programming with JDBC and Java, and Java Database Best Practices.

Throughout the Internet era, George has spent his career building enterprise tools for

developers and delivering solutions to the marketing domain. He was an influential force

in the evolution of online gaming through the creation of a number of Open Source MUD

libraries, and he created the first JDBC driver in 1996—the Open Source mSQL-JDBC.

Most recently, George has been involved in the development of systems to support the

deployment of transactional web applications in the cloud. Prior to his web experience,

John worked in modeling and simulation as a mechanical engineer performing car crash

simulations for the NHTSA.

George holds a B.A. in philosophy from Bates College in Lewiston, Maine, and an M.B.A.

from the Kellogg School of Management in Evanston, Illinois. He currently lives in

Minnesota with his wife Monique and his daughters Kyra and Lindsey.

Download at WoweBook.Com

http://www.veer.com

C O L O P H O N

The cover image is from http://www.veer.com. The cover font is Adobe ITC Garamond. The

text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code

font is LucasFont’s TheSansMonoCondensed.

Download at WoweBook.Com

	Table of Contents
	Preface
	Audience for This Book
	Organization of the Material
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	We’d Like Your Feedback!
	Acknowledgments

	Chapter 1. Cloud Computing
	The Cloud
	Software
	Hardware
	The advantages of a cloud infrastructure
	Hardware virtualization
	Cloud storage

	Cloud Application Architectures
	Grid Computing
	Transactional Computing

	The Value of Cloud Computing
	Options for an IT Infrastructure
	The Economics
	Capital costs
	Cost comparison
	The bottom line

	Cloud Infrastructure Models
	Platform As a Service Vendor
	Infrastructure As a Service
	Private Clouds
	All of the Above

	An Overview of Amazon Web Services
	Amazon Elastic Cloud Compute (EC2)
	Amazon Simple Storage Service (S3)
	Amazon Simple Queue Service (SQS)
	Amazon CloudFront
	Amazon SimpleDB

	Chapter 2. Amazon Cloud Computing
	Amazon S3
	Access to S3
	Web Services
	BitTorrent

	S3 in Action

	Amazon EC2
	EC2 Concepts
	EC2 Access
	Instance Setup
	Access to an Instance
	Security Groups
	Availability Zones
	Static IP Addresses
	Data Storage in EC2
	EBS volume setup
	Volume management
	Snapshots

	AMI Management

	Chapter 3. Before the Move into the Cloud
	Know Your Software Licenses
	The Shift to a Cloud Cost Model
	How to Approach Cost Comparisons
	A Sample Cloud ROI Analysis
	Where the Cloud Saves Money

	Service Levels for Cloud Applications
	Availability
	How to estimate the availability of your system
	What constitutes availability?
	Cloud service availability
	Amazon Web Services service levels
	Expected availability in the cloud
	Reliability

	Performance
	Clustering versus independent nodes
	EC2 performance constraints

	Security
	Legal, Regulatory, and Standards Implications
	There Is No Perimeter in the Cloud
	The Risk Profile for S3 and Other Cloud Storage Solutions Is Unproven

	Disaster Recovery

	Chapter 4. Ready for the Cloud
	Web Application Design
	System State and Protecting Transactions
	The problem with memory locks
	Transactional integrity through stored procedures
	Two alternatives to stored procedures

	When Servers Fail

	Machine Image Design
	Amazon Machine Image Data Security
	What Belongs in a Machine Image?
	A Sample MySQL Machine Image
	Amazon AMI Philosophies

	Privacy Design
	Privacy in the Cloud
	Managing the credit card encryption
	Processing a credit card transaction
	If the e-commerce application is compromised
	If the credit card processor is compromised

	When the Amazon Cloud Fails to Meet Your Needs

	Database Management
	Clustering or Replication?
	Using database clustering in the cloud
	Using database replication in the cloud
	Replication for performance

	Primary Key Management
	How to generate globally unique primary keys
	Support for globally unique random keys

	Database Backups
	Types of database backups
	Applying a backup strategy for the cloud

	Chapter 5. Security
	Data Security
	Data Control
	When the cloud provider goes down
	When a subpoena compels your cloud provider to turn over your data
	When your cloud provider fails to adequately protect their network

	Encrypt Everything
	Encrypt your network traffic
	Encrypt your backups
	Encrypt your filesystems

	Regulatory and Standards Compliance

	Network Security
	Firewall Rules
	Network Intrusion Detection
	The purpose of a network intrusion detection system
	Implementing network intrusion detection in the cloud

	Host Security
	System Hardening
	Antivirus Protection
	Host Intrusion Detection
	Data Segmentation
	Credential Management

	Compromise Response

	Chapter 6. Disaster Recovery
	Disaster Recovery Planning
	The Recovery Point Objective
	The Recovery Time Objective

	Disasters in the Cloud
	Backup Management
	Fixed data strategy
	Configuration data strategy
	Persistent data strategy (aka database backups)
	Backup security

	Geographic Redundancy
	Spanning availability zones
	Operating across regions

	Organizational Redundancy

	Disaster Management
	Monitoring
	Load Balancer Recovery
	Application Server Recovery
	Database Recovery

	Chapter 7. Scaling a Cloud Infrastructure
	Capacity Planning
	Expected Demand
	Determining your expected demand
	Analyzing the unexpected

	The Impact of Load
	Application architecture and database architecture revisited
	Points of scale

	The Value of Your Capacity
	A simple thought experiment
	How might the outcome have been different?

	Cloud Scale
	Tools and Monitoring Systems
	The procurement process in the cloud
	Managing proactive scaling
	Managing reactive scaling
	A recommended approach

	Scaling Vertically

	Appendix A. Amazon Web Services Reference
	Amazon EC2 Command-Line Reference
	ec2-add-group
	ec2-add-keypair
	ec2-allocate-address
	ec2-associate-address
	ec2-attach-volume
	ec2-authorize
	ec2-bundle-instance
	ec2-cancel-bundle-task
	ec2-confirm-product-instance
	ec2-create-snapshot
	ec2-create-volume
	ec2-delete-group
	ec2-delete-keypair
	ec2-delete-snapshot
	ec2-delete-volume
	ec2-deregister
	ec2-describe-addresses
	ec2-describe-availability-zones
	ec2-describe-bundle-tasks
	ec2-describe-group
	ec2-describe-image-attribute
	ec2-describe-images
	ec2-describe-instances
	ec2-describe-keypairs
	ec2-describe-regions
	ec2-describe-snapshots
	ec2-describe-volumes
	ec2-detach-volume
	ec2-disassociate-address
	ec2-get-console-output
	ec2-get-password
	ec2-modify-image-attribute
	ec2-reboot-instances
	ec2-release-address
	ec2-register
	ec2-reset-image-attribute
	ec2-revoke
	ec2-run-instances
	ec2-terminate-instances

	Amazon EC2 Tips
	Filesystem Encryption
	Setting Up RAID for Multiple EBS Volumes

	Appendix B. GoGrid
	Types of Clouds
	Cloudcenters in Detail
	Data Centers in the Clouds
	GoGrid Versus Traditional Data Centers
	Horizontal and vertical scaling
	GoGrid deployment architectures

	Focus on Web Applications

	Comparing Approaches
	Side-by-Side Comparison
	Real-Life Usage

	What’s Right for You?
	

	Appendix C. Rackspace
	Rackspace’s Cloud Services
	Cloud Servers
	Cloud Files
	Cloud Sites

	Fully Integrated, Backed by Fanatical Support
	

	Index

